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Introduction

“Latent class analysis” (LCA) comprises a set of techniques used to
model situations where there are different subgroups of individuals,
and group memebership is not directly observed, for example:.

I Social sciences: a population where different subgroups have
different motivations to drink.

I Medical sciences: using available data to identify subgroups of
risk for diabetes.

I Survival analysis: subgroups that are vulnerable to different
types of risks (competing risks).

I Education: identifying groups of students with different
learning skills.

I Market research: identifying different kinds of consumers.



The scope of the term “latent class analysis” varies widely from
source to source.

Collin and Lanza (2010) discuss some of the models that are
usually considered LCA. Also, they point out: “ In this book, when
we refer to latent class models we mean models in which the latent
variable is categorical and the indicators are treated as categorical”.



In Stata, we use “ LCA” to refer to a wide array of models where
there are two or more unobserved classes

I Dependent variables might follow any of the distributions
supported by gsem, as logistic, Gaussian, Poisson,
multinomial, negative binomial, Weibull, etc.(help gsem
family and link options)

I There might be covariates (categorical or continuos) to explain
the dependent variables

I There might be covariates to explain class membership

Stata adopts a model-based approach to LCA. In this context, we
can see LCA as group analysis where the groups are unknown.

Let’s see an example, first with groups and then with classes:



Below we use group() option fit regressions to the childweight
data, weight vs age, different regressions per sex:
. gsem (weight <- age), group(girl) ginvariant(none) ///
> vsquish nodvheader noheader nolog

Group : boy Number of obs = 100

Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight
age 3.481124 .1987508 17.52 0.000 3.09158 3.870669

_cons 5.438747 .2646575 20.55 0.000 4.920028 5.957466

var(e.weight) 2.4316 .3438802 1.842952 3.208265

Group : girl Number of obs = 98

Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight
age 3.250378 .1606456 20.23 0.000 2.935518 3.565237

_cons 4.955374 .2152251 23.02 0.000 4.533541 5.377207

var(e.weight) 1.560709 .2229585 1.179565 2.06501

Group analysis allows us to make comparisons between these equations, and easily set
some common. (help gsem group options)



Now let’s assume that we have the same data, and we don’t have
variable girl. We suspect that there are two groups that behave
different.

. gsem (weight <- age), lclass(C 2) lcinvariant(none) ///
> vsquish nodvheader noheader nolog

Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.C (base outcome)

2.C
_cons .5070054 .2725872 1.86 0.063 -.0272557 1.041267



Class : 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight
age 5.938576 .2172374 27.34 0.000 5.512798 6.364353

_cons 3.8304 .2198091 17.43 0.000 3.399582 4.261218

var(e.weight) .6766618 .1817454 .3997112 1.145505

Class : 2

Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight
age 2.90492 .2375441 12.23 0.000 2.439342 3.370498

_cons 5.551337 .4567506 12.15 0.000 4.656122 6.446551

var(e.weight) 1.52708 .2679605 1.082678 2.153893



The second table on the LCA model same structure as the output
from the group model.

In addition, the LCA output starts with a table corresponding to
the class estimation. This is a binary (logit) model used to find the
two classes.

In the latent class model all the equations are estimated jointly and
all parameters affect each other, even when we estimate different
parameters per class.

How do we interpret these classes? We need to analyze our classes
and see how they relate to other variables in the data. Also, we
might interpret our classes in terms of a previous theory, provided
that our analysis is in agreement with the theory. We will see
post-estimation commands that implement the usual tools used for
this task.



Latent class analysis in Stata is an extension of the classic latent
class analysis.

Stata documentation and formulas refer to the general model, and
don’t match the notation and approach you will see on the classic
LCA literature (though results match).

We’ll introduce the classic approach to LCA and discuss how Stata
approach generalizes it.



Example: Role conflict dataset

. use gsem_lca1
(Latent class analysis)

. notes in 1/4

_dta:
1. Data from Samuel A. Stouffer and Jackson Toby, March 1951, "Role conflict

and personality", _The American Journal of Sociology_, vol. 56 no. 5,
395-406.

2. Variables represent responses of students from Harvard and Radcliffe who
were asked how they would respond to four situations. Respondents
selected either a particularistic response (based on obligations to a
friend) or universalistic response (based on obligations to society).

3. Each variable is coded with 0 indicating a particularistic response and 1
indicating a universalistic response.

4. For a full description of the questions, type "notes in 5/8".



. describe

Contains data from gsem_lca1.dta
obs: 216 Latent class analysis

vars: 4 10 Oct 2017 12:46
size: 864 (_dta has notes)

storage display value
variable name type format label variable label

accident byte %9.0g would testify against friend in
accident case

play byte %9.0g would give negative review of
friend´s play

insurance byte %9.0g would disclose health concerns to
friend´s insurance company

stock byte %9.0g would keep company secret from
friend

Sorted by: accident play insurance stock



. list in 120/121

accident play insura~e stock

120. 1 0 1 1
121. 1 1 0 0

For each observation, we have a vector of responses
Y = (Y1,Y2,Y2,Y4) (I am omitting an observation index)



Classic approach

Let’s assume that we have two classes, C1 and C2.
The probabilty of Y taking a value y can be expressed as:

P(Y = y |C1) ∗ P(C1) + P(Y = y |C2) ∗ P(C2)

Which, under the assumption of conditional independence, is:

4∏
j=1

P(Yj = yj |C1)× P(C1) +
4∏

j=1

P(Yj = yj |C2)× P(C2)



In short, the likelihood contribution for an observation would be:

L =
∑
k=1,2

4∏
j=1

P(Yj = 1|Ck)yj × (1− P(Yj = 1|Ck))1−yj × P(Ck)

Maximizing the sum of the log-likelihood contributions from all
observations, we obtain the values P(Yj = rj |Ck) and P(Ck).
In the literature, you will see generalizations of this formula, like

L =
∑

k=1,...m

4∏
j=1

Rj∏
rj=1

P(Yj = rj |Ck)(I (yj=rj)) × P(Ck)

where rj , j = 1 . . .Rj are the possible values for variable Yj .



Stata (Model-based) approach

The description before corresponds to a non-parametric estimation.
We estimate the probabilities directly, not through a
parameterization.
Now, how do we do it in Stata?

.gsem (accident play insurance stock <- ), logit lclass(C 2)

We are fitting a logit model for each class, with no covariates.
Because there are no covariates, estimating the constant is
equivalent to estimating the probability: p = F (constant), where F
is the inverse logit function.



The model-based approach can be represented as a mixed model:

L = f (y ; Θ1)× P(C1) + f (y ; Θ2)× P(C2)

Where

f (y ; Θk) =
4∏

i=1

pyijk × (1− pjk)1−yi

and pjk is expressed as exp(consjk)/(1 + exp(consjk)
gsem also represents class probabilities P(Ck) with a logit model.

By default, we are fitting the non-parametric model, but this
flexibility allows us to include covariates to model the class
membership probabilities, the conditional probabilities, or both.

Now, let’s fit the model.



. gsem(accident play insurance stock <- ),logit lclass(C 2) ///
> vsquish nodvheader noheader nolog

Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.C (base outcome)

2.C
_cons -.9482041 .2886333 -3.29 0.001 -1.513915 -.3824933

Class : 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

accident
_cons .9128742 .1974695 4.62 0.000 .5258411 1.299907

play
_cons -.7099072 .2249096 -3.16 0.002 -1.150722 -.2690926

insurance
_cons -.6014307 .2123096 -2.83 0.005 -1.01755 -.1853115

stock
_cons -1.880142 .3337665 -5.63 0.000 -2.534312 -1.225972



Coef. Std. Err. z P>|z| [95% Conf. Interval]

Class : 2

Coef. Std. Err. z P>|z| [95% Conf. Interval]

accident
_cons 4.983017 3.745987 1.33 0.183 -2.358982 12.32502

play
_cons 2.747366 1.165853 2.36 0.018 .4623372 5.032395

insurance
_cons 2.534582 .9644841 2.63 0.009 .6442279 4.424936

stock
_cons 1.203416 .5361735 2.24 0.025 .1525356 2.254297



After our estimation, the predict command allows us to obtain
many predictions:

Probabilities of positive outcome, conditional on class
P(Y1 = 1|C2) predict pr1c, mu outcome(accident) class(2)
P(Yj = 1|C2)∀j predict prc*, mu class(2)
P(Y1 = 1|Ck)∀k predict prc*, mu outcome(accident)
P(Yj = 1|Ck)∀j , k predict prc*, mu

Probabilities of positive outcome, marginal on class
P(Y 1 = 1) predict p1, mu outcome(1) pmarginal
P(Yj = 1)∀j predict p*, mu pmarginal

Prior probability of class membership, P(Ck)

P(Y ∈ Ck) predict classpr*, classpr
Posterior probability of class membership, (Bayes formula)

P(Y ∈ Ck |Y = y) predict classpostpr*, classposteriorpr



To interpret the classes, we could compare the mean of the
(counter-factual) conditional probabilities for each answer on each
class; (the ones we get with predict by default) estat lcmean will
do that.

. estat lcmean

Latent class marginal means Number of obs = 216

Delta-method
Margin Std. Err. [95% Conf. Interval]

1
accident .7135879 .0403588 .6285126 .7858194

play .3296193 .0496984 .2403572 .4331299
insurance .3540164 .0485528 .2655049 .4538042

stock .1323726 .0383331 .0734875 .2268872

2
accident .9931933 .0253243 .0863544 .9999956

play .9397644 .0659957 .6135685 .9935191
insurance .9265309 .0656538 .6557086 .9881667

stock .769132 .0952072 .5380601 .9050206



“marginal means” on the title refers to means averaged over the
observations, but they are conditional on the class.

The probability of giving an universalistic response for each
question is higher in group 2 than in group 1.



Also, we compute the predicted probabilities for each class.

Prior probabilities are the ones predicted by the logistic model for
the latent class, which (with no covariates) will have no variations
across the data.

. predict classpr*, classpr

. summ classpr*

Variable Obs Mean Std. Dev. Min Max

classpr1 216 .7207538 0 .7207538 .7207538
classpr2 216 .2792462 0 .2792462 .2792462



This is an estimator of the population expected means for these
variables. These estimates, and their confidence intervals can be
obtained with estat lcprob.

. estat lcprob

Latent class marginal probabilities Number of obs = 216

Delta-method
Margin Std. Err. [95% Conf. Interval]

C
1 .7207539 .0580926 .5944743 .8196407
2 .2792461 .0580926 .1803593 .4055257



Stata provides some tools to evaluate goodness of fit:

. estat lcgof

Fit statistic Value Description

Likelihood ratio
chi2_ms(6) 2.720 model vs. saturated

p > chi2 0.843

Information criteria
AIC 1026.935 Akaike´s information criterion
BIC 1057.313 Bayesian information criterion



Model with covariates: Geometry dataset 1

Variables pyit1 and pyit2 contains binary responses for two
Pythagorean test; alg is a score for a test on algebra. We fit three
different models.

. use algebra, clear

. list in 1/5

alg_sc~e pyit1 pyit2 freq

1. 0 0 0 61
2. 0 0 1 24
3. 0 1 0 9
4. 0 1 1 6
5. 1 0 0 92

. expand freq
(1,213 observations created)

1(see Hagenaars and McCutcheon, 2002)



Model 1: two classes are determined by the binary variables pyit1
and pyit2
. gsem (pyit1 pyit2 <-, logit), lclass(C 2) )

Model 2: two classes are determined by the binary variables pyit1
and pyit2, and variable alg might contain helpful information to
identify those groups
. gsem (pyit1 pyit2 <-, logit) (C <- alg), lclass(C 2)

Model 3: two classes are determined by the regressions of pyit1
and pyit2, on variable alg; We are accounting not only for
variations on the response among groups, but also on how this
reponse relates to the covariate.
. gsem (pyit1 pyit2 <- alg, logit) , lclass(C 2) )



gsem (pyit1 pyit2 <-, logit), lclass(C 2) startvalues(randomid, draws(5)
seed(23))

. estat lcmean, vsquish

Latent class marginal means Number of obs = 1,241

Delta-method
Margin Std. Err. [95% Conf. Interval]

1
pyit1 .7707281 142.2577 0 1
pyit2 .8156159 247.4665 0 1

2
pyit1 .1721594 253.6474 0 1
pyit2 .2158945 146.3729 0 1

. estat lcprob,vsquish

Latent class marginal probabilities Number of obs = 1,241

Delta-method
Margin Std. Err. [95% Conf. Interval]

C
1 .506648 241.258 0 1
2 .493352 241.258 0 1



gsem (pyit1 pyit2 <-, logit) (C <- alg), lclass(C 2)

. estat lcmean

Latent class marginal means Number of obs = 1,241

Delta-method
Margin Std. Err. [95% Conf. Interval]

1
pyit1 .1985894 .0236409 .1562666 .2489921
pyit2 .3404315 .0202552 .3019188 .3811744

2
pyit1 .9923852 .0292546 .0619459 .9999961
pyit2 .8545888 .0270487 .7932187 .9000403

. estat lcprob

Latent class marginal probabilities Number of obs = 1,241

Delta-method
Margin Std. Err. [95% Conf. Interval]

C
1 .6512534 .0237176 .6034547 .6961911
2 .3487466 .0237176 .3038089 .3965453



gsem (pyit1 pyit2 <- alg, logit) , lclass(C 2) startvalues(randomid,
draws(5) seed(15))

. estat lcmean

Latent class marginal means Number of obs = 1,241

Delta-method
Margin Std. Err. [95% Conf. Interval]

1
pyit1 .5846306 .0193834 .5462094 .6220497
pyit2 .6409796 .0220191 .596784 .682905

2
pyit1 .0633972 .0363614 .0199756 .1835298
pyit2 .0618345 .036141 .0190673 .1826642

. estat lcprob

Latent class marginal probabilities Number of obs = 1,241

Delta-method
Margin Std. Err. [95% Conf. Interval]

C
1 .7922178 .0294795 .728562 .844139
2 .2077822 .0294795 .155861 .271438



From model 2, we see that variable alg helps us to identify groups
with different scores; The identification of the ’high’ and ’low’ score
groups doesn’t improve when accounting for their dependence on
alg, suggesting there might be a different interpretation for the last
model.



Additional remarks:
I LCA order might vary when we vary the starting values.
I Fit the model repeateadly with different starting values to

avoid local maxima.
I The conditional independence assumption might not be true; a

way to account for dependence is to incorporate more discrete
latent variables. Another way, for categorical responses, is to
generate new categories with combinations of the correlated
variables.

I The conditional independence is not necessary for Gaussian
variables, we can include correlations among them.



Concluding remarks:
I gsem offers a framework where we can fit models accounting

for latent classes.
I Responses might take one or more of the distributions

supported by gsem.
I We can fit non-parametric models by using only binary or

categorical responses. We can also parameterize the responses
and the probabilities of class membership by introducing
covariates.

I Discrete latent variables might have more than two groups,
and more than one latent variable also might be included.

I Some latent class models are a special case of finite mixture
models. The fmm prefix allows us to fit finite mixture models
for a variety of distributions.


