AN IMPLEMENTATION OF CART IN STATA

Ricardo Mora

Universidad Carlos Il de Madrid

Madrid, Oct 2015

1/45

|
Outline

@ Introduction

e Predictive learning
© carT

O AREES

© simulations

2/45

Introduction

Introduction

3/45

CART

@ Tree-structured models are predictive models that use
two-dimensional binary trees.

e When the target variable can take a finite set of values, binary trees
are called classification trees.

o When the target variable can take continuous values (typically real
numbers), they are called regression trees.

@ Estimation of the tree is nontrivial when the structure of the tree is
unknown: CART (Breiman et al, 1984)

o CART: Classification and Regression Trees
@ Software packages: Salford Systems CART, Matlab, R

@ In Stata, module <cart> (Wim van Putten), performs CART
analysis for failure time data.

@ In this presentation, | first describe CART and then discuss its
implementation with <aries>

Predictive learning

Predictive learning

Predictive learning

@ Consider the decomposition of output variable y between the
effects of a set of observed controls x and that of all other factors
such that

y=E(@lx)+e

@ The objective in predictive learning is to obtain a useful

approximation of E (y|x)

@ Predictive learning is implemented through an optimization
problem on a finite sample {y;, x;}, such as

E(ylx) = arg(”)lin Z (yi — g (%))

Identification and the curse of dimensionality

@ In order to obtain a well defined problem, further assumptions on
g (x;) must be added

e constraints on eligible functions g (x;)
@ constraints on the set of controls x;

@ Second option not practical in many situations:

e If 100 observations represents a dense sample for a single input
system, then for K inputs, 100X
o all observations are close to an “edge” of the sample

Penalty

@ One way of overcoming these problems is by incorporating a
penalty in the problem

E (vl) = argmin Y { (3 — (v))” + A6 (s () |

8(x)
@ The best fit is given by the solution without penalty, A =0
e very low predictive power (overfitting)

@ Common approach: divide the sample into a learning and a test
sample

Examples of predictive learning

s if g (x) # h (x]9)

@ least squares: ¢ (g (x)) = { 0 otherwise

e () and ¢ are known
e hence -
E () = argmin 3 {0 — (519"}
8x i
@ single layer neural network: g (x) = >, ass (x'6;)
e s(-) is a sigmoid function

@ projection pursuit: g (x) = >, g (¥'0;|a;)

/45

~___Predutivelearning |
Tree structures

[oooifg(®) A N era x [I5,1(4 < x < w)
qb(g(x))_{OO’[herwise = s

where [; and u; are the respective lower and upper limit of the region on
each control

@ T is a partition of the space of all possible values of x
@ Therefore

K
E(yx) = a x H]l(lj < x; < uj)
=1

@ Both the partition T and the expectations a, associated to each
element in the partition are unknown

10/45

Example

Predictive learning

X
21

Q>
11/45

Mathematical and tree representation

ap if xp < xop

E(fx,x2) = ¢ a2 ifxa > xp1 and x; < xy
asz if xo > xp; and x; > xq;

12/45

CART

Classification And Regression Trees

13/45

Estimation of tree structures

@ The problem is if we know the tree structure: least squares
@ Least squares is unfeasible when structure is unknown

e LS on 50 cells with at most two terminal nodes ~ 6 x 10'* models
(or more than 15 years of computing time)

@ Second best solution: recursive partition

@ regions become more local
@ each step only considers a limited number of possible splits

14/45

Splitting algorithm in regression trees

@ Assume that we have a tree structure T and that we want to split
node ¢*, one terminal node in 7.

@ Let R(T) be the residual sum of squares within each terminal
node of the tree.

@ Consider the set of possible binary partitions or splits.

Recursive partitioning is defined by choosing the split at each step of
the algorithm such that the reduction in R (T') is maximized. J

@ The process ends with the largest possible tree, Tyax Wwhere there
are no nodes to split or the number of observations reach a lower
limit (splitting rule).

15/45

Growing the tree until Tyax

@ Often, the result will be equivalent to dividing the sample into all
possible cells and computing within-cell least squares.

@ Growing the tree until no further partitioning is possible helps
avoiding having to select a rule to stop splitting.

@ Usually, however, Ty4x will be too complex in the sense that some
terminal nodes could be aggregated into one terminal node.

@ A more simplified structure will normally lead to more accurate
estimates since the number of observations in each terminal node
grows as aggregation takes place.

@ ltis also intuitive to see that if aggregation goes too far,
aggregation bias will become a serious problem.

16/45

Pruning the tree: Error-complexity clustering

@ In order to aggregate from T);4x We can use a clustering algorithm
procedure.

@ For a given value o, let R(«, T) = R(T) + «|T| where |T| denotes
the number of terminal nodes, or complexity, of the tree.

@ The tree structured estimate for a given «, T («), is the value that
minimizes R («, T') for the set of subtrees of Tyx.

e T («) belongs to a much broader set than the sequence of all trees
obtained in the recursive partition algorithm.

@ For all a: Tyax > T (o) > ... = {root} (pruning the tree)

17/45

Honest tree

@ By construction, R (Tuax) is the lowest value for the sequence of
subtrees.

e This may not be true for an independent sample: choosing Ty4x as
our tree structured model may lead to overoptimistic results for R (-)

@ There are three strategies to obtain unbiased estimates of R (-):
o test sample: choose the tree in the sequence that minimizes

R (T) + 5 x SE (R" (T))

where s is a given positive value
e K-fold cross validation
@ bootstrap

18/45

Tyax €xample: 5 terminal nodes

19/45

T, example: 4 terminal nodes

20/45

T, example: 1 terminal node

@ The sequence is thus: {Tyax, T1,T» = {root}}
@ Among the three, we would choose the tree that gives a smaller
R*(T)+ s x SE(R"(T))

e For example, s = 1 may be useful when the sequence provides a
flat profile for R (T) after reaching a certain level of complexity

21/45

CART Estimator properties

@ Consistency requires an ever more dense sample at all
n-dimensional balls of the input space

@ Cost-complexity minimization together with test sample unbiased
estimates of R () guarantee that such condition is satisfied by
regression tree partitions.

@ The basic results can be found in Breiman et alia (1984, chapter
12).

@ For small samples, high correlation in the explanatory variables
will induce instability in the tree topology: interpretation of the
contribution of each variable will become problematic

22/45

ARIES

ARIES

23/45

The aries ado

aries varname splitvarlist [if] [in], options)

@ varname: output variable (it must be discrete if classification tree
is performed)

@ splitvarlist. variables whose combinations identify the terminal
nodes

@ By default, the command performs CART for regression trees with
a constant in each terminal node using a test sample and the 0 SE
rule for estimating the honest tree.

24/45

ARIES

Options for regression trees

@ regressors(varlist): controls in terminal nodes. A regression
line is estimated in each terminal node.

@ exogenous(varlisi): list of exogenous variables. 1V regression is
estimated in each terminal node. The number of exogenous
variables must be at least equal to the number of controls.

@ noconstant: estimates regression lines without constant.

25/45

Options for classification trees

@ Classification trees:

e The output variable must be discrete.

e Each value of the output variable refers to one of J classes.

o Classification trees grows the tree using a given impurity measure
based on the sample probability of each class in each node.

@ Options for classification trees:

o classification: performs classification tree (output variable must be
discrete)
e impurity(#): impurity measure code:

@ 1: Entropy measure
@ 2: Gini measure

26/45

Options common to classification and regression trees

@ seed(#): seed to replicate random division of the sample into a
learning and a test sample

@ 1ssize(#): proportion of the learning sample (default is 0.5)
@ stop(#): integer for stop splitting rule
@ rule(#): SE rule to identify honest tree

27145

Output display

After regression trees:
@ The overall fit of the model both for the learning and the test
sample
@ The definition of each terminal node in terms of the splitting
variables
@ The coefficient estimates and standard errors for each terminal
node
e The standard error of each terminal node regression is computed
using the test sample
After classification trees:
@ The overall miss-classification rate of the model estimated by test
sample
@ The definition of each terminal node in terms of the splitting
variables
@ The miss-classification rate for each terminal node in the learning

and the test sample
28/45

Saved results

@ Saved results for Regression trees:

e usual scalars saved in e() after regresion
e coefficients estimates and variance-covariance matrices for each
terminal node’s regression

@ Common saved results:

@ a matrix representation of the tree structure

e a matrix with range of values for splitting variables in each terminal
node

e a matrix with the sequence of optimal trees and the test-sample
R" (T) measure for each of them

29/45

Predictions

@ aries saves the coefficients estimates and also matrix
representations of the estimated tree

@ predict is available after estimation

@ After regression trees: predict newvar [if] [in], xb
residual nodes

e xb: output variable predictions (the default)
@ residual: residuals
@ nodes: terminal node code

@ After classification trees: predict newvar [if] [in]

e the variable newvar includes the class code predicted by the
estimated tree for each observation

30/45

Simulations

Simulations

31/45

Simulations

Example 1: RT with constant

e~N(0,1)
s1€4{2,4,6,8},s52 € {3,6,9,12}

32/45

aries y sl s2,

Learning Sample

Number of obs
F(2, 519)
Prob > F
R-squared

Adj R-squared
Root MSE

522

1135.5
0.0000
0.8140
0.8133
1.0217

Node 3: 6<=sl<=8 3<=s2<=12

Test Sample

Number of obs = 478
F(2, 475) = 1066.1
Prob > F = 0.0000

R-squared = 0.8178
Adj R-squared = 0.8170
Root MSE = 1.0077

No of obs (Learning smpl) = 257 No of obs (Test smpl) = 239
Coef. std. Err. z P>|z| [95% Conf. Interval
_cons 3.109557 .0622225 49.97 0.000 2.987603 3.23151
Node 4: 2<=sl<=4 3<=s2<=3
No of obs (Learning smpl) = 70 No of obs (Test smpl) = 63
Coef. Std. Err. z P>|z| [95% Conf. Interval
_cons -2.852275 .1054995 -27.04 0.000 -3.059051 -2.6455
Node 5: 2<=sl<=4 6<=s52<=12
No of obs (Learning smpl) = 195 No of obs (Test smpl) = 176
Coef. Std. Err. z P>|z| [95% Conf. Interval
_cons -.0097753 .0760195 -0.13 0.898 -.1587707 .1392202

33/45

A simple Monte Carlo

Table: Monte Carlo: R?

No. obs. o OLS ariesiLS aries: TS
250 5 0.711 0.946 0.946
250 1 0.612 0.814 0.815
250 2 0.396 0.525 0.528
750 5 0.710 0.946 0.947
750 1 0.611 0.813 0.816
750 2 0.393 0.520 0.529
1000 5 0.711 0.946 0.946
1000 1 0612 0.814 0.815
1000 2 0.393 0.523 0.524

Note: Monte Carlo results using 500 replications.

34/45

Simulations

Example 2: RT with regression line

y=—3+0.5xx +¢|

e~N(0,1)
51 €{2,4,6,8) 5, € {3,6,9, 12}

35/45

aries y sl s2,

Learning Sample

Number of obs = 522

F(5, 516) = 339.95
Prob > F = 0.0000
R-squared 0.7671
Adj R-squared = 0.7649
Root MSE =1.0113

Node 3: 6<=s1<=8 3<=s2<=12

reg(xl)

stop (5)

Test Sample

Number of obs = 478
F(5, 472) = 339.11
Prob > F = 0.0000

R-squared = 0.7822
Adj R-squared = 0.7799
Root MSE = 0.9746

No of obs (Learning smpl) = 257 No of obs (Test smpl) = 239
Coef. Std. Err. z P>|z| [95% Conf. Interval
x1 -.0738962 .0543166 -1.36 0.174 -.1803548 .0325624
_cons 3.229408 .1481916 21.79 0.000 2.938958 3.519859

Node 4: 2<=sl<=4 3<=s2<=3
No of obs (Learning smpl) = 70 No of obs (Test smpl) = 63

Coef. std. Err. z P>|z| [95% Conf. Interval
x1 .5736499 .1053622 5.44 0.000 .3671437 .780156
_cons -3.173849 .2846731 -11.15 0.000 -3.731798 -2.6159
Node 5: 2<=sl<=4 6<=s52<=12
No of obs (Learning smpl) = 195 No of obs (Test smpl) = 176
Coef. Std. Err. z P>|z| [95% Conf. Interval
x1 .0250965 .0669443 0.37 0.708 -.106112 .1563049
_cons .054355 .1829895 0.30 0.766 —-.3042978 .4130078

36/45

Some saved results

matrix list e (tree)

e(tree) [5,4]

rl
r2
r3
rd
r5

matrix list

e(_tree) [5,5]

rl
r2
r3
rd
r5

Node Child Split_var
1 2 1
2 4 2
3 0 0
4 0 0
5 0 0
e (_tree)

Node sl_min sl_max s2_min
1 2 8 3
2 2 4 3
3 6 8 3
4 2 4 3
5 2 4 6

matrix list e (pruning)

e (pruning) [12,2]

rl
r2
r3
rd
r5
ré
r7
r8
r9
rl0
rll
rl2

Complexity

1
2
3
4
6
10
11
12
13
14
15
16

Impurity
4.2953238
1.3388132
.94715324
.94849036
.95739838
.98367937
.99016994
.98654955

.9930246
.99768252
.99777621
.99712844

Cut_off

s2_max
12

12

12

3

12

4.

coouu

37/45

Simulations

Example 3: RT with IV line

y=-340.5 ><x1-|—e‘

e ~N(0,1), cov (xi,€e) # 0, cov(z,e) =0
s1 €{2,4,6,8} s, € {3,6,9,12}

38/45

aries y sl s2, reg(xl) exog(zl) stop(5)

Learning Sample Test Sample
Number of obs = 522 Number of obs = 478
F(5 516) = 386.75 F(5, 472) = 392.25
Prob > F = 0.0000 Prob > F = 0.0000
R-squared 0.7899 R-squared 0.8066
Adj R-squared = 0.7879 Adj R-squared 0.8046
Root MSE = 1.0190 Root MSE = 0.9797
Node 3: 6<=sl<=8 3<=52<=12
No of obs (Learning smpl) = 257 No of obs (Test smpl) = 239
Coef. std. Err. z P>zl [95% Conf. Interval
x1 -.152294 .1119791 -1.36 0.174 -.371769 0671811
_cons 3.236396 1529517 21.16 0.000 2.936616 3.536176
Exogenous variable: zl
Node 4: 2<=sl<=4 3<=s2<=3
No of obs (Learning smpl) = 70 No of obs (Test smpl) = 63
Coef. Std. Err. z P>zl [95% Conf. Interval
x1 6430845 .2088366 3.08 0.002 .2337722 1.052397
_cons -3.168874 .2838073 -11.17 0.000 -3.725126 -2.612622
Exogenous variable: zl
Node 5: 2<=sl<=4 6<=s2<=12
No of obs (Learning smpl) = 195 No of obs (Test smpl) = 176
Coef. Std. Err. z P>|z| [95% Conf. Interval
x1 .0496941 .1334359 0.37 0.710 -.2118355 .3112237
_cons 0538148 .1855386 0.29 0.772 -.3098342 4174638

Exogenous variable: zl

39/45

Example 4: Classification trees

Class 3 w.p. .7

Class 1 w.p. .7 | |Class 2 w.p. .7

s1 € {2,4,6,8} s, € {3,6,9,12}

40/45

aries y sl s2, class

Learning sample (no.obs): 522
Test sample (no.obs): 478
No. of terminal nodels: 5

Pr. of missclassification: 0.3096

Node 3: 6<=s1<=8 3<=s2<=12

Class:3 Learning Sample Test Sample
Pr(missclassification) 0.2918 0.2762

No. of obs. 257 239

Node 4: 2<=sl<=4 3<=s52<=3

Class:1 Learning Sample Test Sample
Pr(missclassification) 0.3000 0.2857

No. of obs. 70 63

Node 11: 2<=sl<=4 12<=s2<=12

Class:2 Learning Sample Test Sample
Pr(missclassification) 0.2373 0.3729

No. of obs. 59 59

Node 16: 2<=sl<=2 6<=s52<=9

Class:2 Learning Sample Test Sample
Pr(missclassification) 0.2329 0.3770

No. of obs. 73 61

Node 17: 4<=sl<=4 6<=s52<=9

Class:2 Learning Sample Test Sample
Pr(missclassification) 0.3333 0.3393

No. of obs. 63 56

41/45

Simulations

42/45

Extensions

@ v-fold cross-validation for small data sets
@ combining splitting variables in a single step
@ categorical splitting variables

@ graphs producing tree representation and sequence of R” (T)
estimates

@ alternative impurity measurements
@ boosting

43/45

Thank yOU

	Introduction
	Predictive learning
	CART
	ARIES
	Simulations
	Appendix

