
AN IMPLEMENTATION OF CART IN STATA

Ricardo Mora

Universidad Carlos III de Madrid

Madrid, Oct 2015

1 / 45

Outline

1 Introduction

2 Predictive learning

3 CART

4 ARIES

5 Simulations

2 / 45

Introduction

Introduction

3 / 45

Introduction

CART

Tree-structured models are predictive models that use
two-dimensional binary trees.

When the target variable can take a finite set of values, binary trees
are called classification trees.
When the target variable can take continuous values (typically real
numbers), they are called regression trees.

Estimation of the tree is nontrivial when the structure of the tree is
unknown: CART (Breiman et al, 1984)

CART: Classification and Regression Trees

Software packages: Salford Systems CART, Matlab, R

In Stata, module <cart> (Wim van Putten), performs CART
analysis for failure time data.

In this presentation, I first describe CART and then discuss its
implementation with <aries>

4 / 45

Predictive learning

Predictive learning

5 / 45

Predictive learning

Predictive learning

Consider the decomposition of output variable y between the
effects of a set of observed controls x and that of all other factors
such that

y = E (y|x) + ε

The objective in predictive learning is to obtain a useful
approximation of E (y|x)
Predictive learning is implemented through an optimization
problem on a finite sample {yi, xi}i such as

Ê (y|x) = argmin
g(x)

∑
i

(yi − g (xi))
2

6 / 45

Predictive learning

Identification and the curse of dimensionality

In order to obtain a well defined problem, further assumptions on
g (xi) must be added

constraints on eligible functions g (xi)
constraints on the set of controls xi

Second option not practical in many situations:

If 100 observations represents a dense sample for a single input
system, then for K inputs, 100K

all observations are close to an “edge” of the sample

7 / 45

Predictive learning

Penalty

One way of overcoming these problems is by incorporating a
penalty in the problem

Ê (y|x) = argmin
g(x)

∑
i

{
(yi − g (xi))

2 + λφ (g (xi))
}

The best fit is given by the solution without penalty, λ = 0

very low predictive power (overfitting)

Common approach: divide the sample into a learning and a test
sample

8 / 45

Predictive learning

Examples of predictive learning

least squares: φ (g (x)) =
{
∞ if g (x) 6= h (x|θ)
0 otherwise

h (·) and θ are known
hence

Ê (y|x) = argmin
g(x)

∑
i

{
(yi − h (xi|θ))2

}
single layer neural network: g (x) =

∑
t ats (x′θt)

s (·) is a sigmoid function

projection pursuit: g (x) =
∑

t gt (x′θt|at)

9 / 45

Predictive learning

Tree structures

φ (g (x)) =
{
∞ if g (x) 6=

∑
t∈T at ×

∏K
j=1 1 (lj < xj ≤ uj)

0 otherwise

where lj and uj are the respective lower and upper limit of the region on
each control

T is a partition of the space of all possible values of x

Therefore

E (y|x) = at ×
K∏

j=1

1 (lj < xj ≤ uj)

Both the partition T and the expectations at associated to each
element in the partition are unknown

10 / 45

Predictive learning

Example

a
3

a
2

a
1

x
1

x
2

a
3

x
21

x
11

11 / 45

Predictive learning

Mathematical and tree representation

E (y|x1, x2) =

a1 if x2 ≤ x21
a2 if x2 > x21 and x1 ≤ x11
a3 if x2 > x21 and x1 > x11

x2 ≤ x21

a1 x1 ≤ x11

a2 a3

yes no

yes no

12 / 45

CART

Classification And Regression Trees

13 / 45

CART

Estimation of tree structures

The problem is if we know the tree structure: least squares
Least squares is unfeasible when structure is unknown

LS on 50 cells with at most two terminal nodes ≈ 6× 1014 models
(or more than 15 years of computing time)

Second best solution: recursive partition

regions become more local
each step only considers a limited number of possible splits

14 / 45

CART

Splitting algorithm in regression trees

Assume that we have a tree structure T and that we want to split
node t∗, one terminal node in T.
Let R (T) be the residual sum of squares within each terminal
node of the tree.
Consider the set of possible binary partitions or splits.

Recursive partitioning is defined by choosing the split at each step of
the algorithm such that the reduction in R (T) is maximized.

The process ends with the largest possible tree, TMAX where there
are no nodes to split or the number of observations reach a lower
limit (splitting rule).

15 / 45

CART

Growing the tree until TMAX

Often, the result will be equivalent to dividing the sample into all
possible cells and computing within-cell least squares.
Growing the tree until no further partitioning is possible helps
avoiding having to select a rule to stop splitting.
Usually, however, TMAX will be too complex in the sense that some
terminal nodes could be aggregated into one terminal node.
A more simplified structure will normally lead to more accurate
estimates since the number of observations in each terminal node
grows as aggregation takes place.
It is also intuitive to see that if aggregation goes too far,
aggregation bias will become a serious problem.

16 / 45

CART

Pruning the tree: Error-complexity clustering

In order to aggregate from TMAX we can use a clustering algorithm
procedure.
For a given value α, let R (α,T) = R (T) + α |T| where |T| denotes
the number of terminal nodes, or complexity, of the tree.
The tree structured estimate for a given α, T (α), is the value that
minimizes R (α,T) for the set of subtrees of TMAX.

T (α) belongs to a much broader set than the sequence of all trees
obtained in the recursive partition algorithm.

For all α: TMAX � T (α1) � . . . � {root} (pruning the tree)

17 / 45

CART

Honest tree

By construction, R (TMAX) is the lowest value for the sequence of
subtrees.

This may not be true for an independent sample: choosing TMAX as
our tree structured model may lead to overoptimistic results for R (·)

There are three strategies to obtain unbiased estimates of R (·):
test sample: choose the tree in the sequence that minimizes

Rts (T) + s× SE (Rts (T))

where s is a given positive value
K-fold cross validation
bootstrap

18 / 45

CART

TMAX example: 5 terminal nodes

1

2

4 5

3

6

8 9

7

19 / 45

CART

T1 example: 4 terminal nodes

1

2 3

6

8 9

7

20 / 45

CART

T2 example: 1 terminal node

1

The sequence is thus: {TMAX,T1,T2 ≡ {root}}
Among the three, we would choose the tree that gives a smaller
Rts (T) + s× SE (Rts (T))

For example, s = 1 may be useful when the sequence provides a
flat profile for Rts (T) after reaching a certain level of complexity

21 / 45

CART

CART Estimator properties

Consistency requires an ever more dense sample at all
n-dimensional balls of the input space
Cost-complexity minimization together with test sample unbiased
estimates of R (·) guarantee that such condition is satisfied by
regression tree partitions.
The basic results can be found in Breiman et alia (1984, chapter
12).
For small samples, high correlation in the explanatory variables
will induce instability in the tree topology: interpretation of the
contribution of each variable will become problematic

22 / 45

ARIES

ARIES

23 / 45

ARIES

The aries ado

aries varname splitvarlist [if] [in], options

varname: output variable (it must be discrete if classification tree
is performed)
splitvarlist: variables whose combinations identify the terminal
nodes
By default, the command performs CART for regression trees with
a constant in each terminal node using a test sample and the 0 SE
rule for estimating the honest tree.

24 / 45

ARIES

Options for regression trees

regressors(varlist): controls in terminal nodes. A regression
line is estimated in each terminal node.
exogenous(varlist): list of exogenous variables. IV regression is
estimated in each terminal node. The number of exogenous
variables must be at least equal to the number of controls.
noconstant: estimates regression lines without constant.

25 / 45

ARIES

Options for classification trees

Classification trees:

The output variable must be discrete.
Each value of the output variable refers to one of J classes.
Classification trees grows the tree using a given impurity measure
based on the sample probability of each class in each node.

Options for classification trees:

classification: performs classification tree (output variable must be
discrete)
impurity(#): impurity measure code:

1: Entropy measure
2: Gini measure

26 / 45

ARIES

Options common to classification and regression trees

seed(#): seed to replicate random division of the sample into a
learning and a test sample
lssize(#): proportion of the learning sample (default is 0.5)
stop(#): integer for stop splitting rule
rule(#): SE rule to identify honest tree

27 / 45

ARIES

Output display

After regression trees:
The overall fit of the model both for the learning and the test
sample
The definition of each terminal node in terms of the splitting
variables
The coefficient estimates and standard errors for each terminal
node

The standard error of each terminal node regression is computed
using the test sample

After classification trees:
The overall miss-classification rate of the model estimated by test
sample
The definition of each terminal node in terms of the splitting
variables
The miss-classification rate for each terminal node in the learning
and the test sample

28 / 45

ARIES

Saved results

Saved results for Regression trees:

usual scalars saved in e() after regresion
coefficients estimates and variance-covariance matrices for each
terminal node’s regression

Common saved results:

a matrix representation of the tree structure
a matrix with range of values for splitting variables in each terminal
node
a matrix with the sequence of optimal trees and the test-sample
Rts (T) measure for each of them

29 / 45

ARIES

Predictions

aries saves the coefficients estimates and also matrix
representations of the estimated tree
predict is available after estimation
After regression trees: predict newvar [if] [in], xb
residual nodes

xb: output variable predictions (the default)
residual: residuals
nodes: terminal node code

After classification trees: predict newvar [if] [in]

the variable newvar includes the class code predicted by the
estimated tree for each observation

30 / 45

Simulations

Simulations

31 / 45

Simulations

Example 1: RT with constant

s1 ≤ 4

s2 ≤ 3

y = −3 + ε y = ε

y = 3 + ε

yes no

yes no

ε ∼ N (0, 1)
s1 ∈ {2, 4, 6, 8} , s2 ∈ {3, 6, 9, 12}

32 / 45

Simulations

aries y s1 s2, stop(5)

Learning Sample Test Sample
Number of obs = 522 Number of obs = 478
F(2, 519) = 1135.5 F(2, 475) = 1066.1
Prob > F = 0.0000 Prob > F = 0.0000
R-squared = 0.8140 R-squared = 0.8178
Adj R-squared = 0.8133 Adj R-squared = 0.8170
Root MSE = 1.0217 Root MSE = 1.0077

Node 3: 6<=s1<=8 3<=s2<=12

No of obs (Learning smpl) = 257 No of obs (Test smpl) = 239

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 3.109557 .0622225 49.97 0.000 2.987603 3.23151

Node 4: 2<=s1<=4 3<=s2<=3

No of obs (Learning smpl) = 70 No of obs (Test smpl) = 63

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons -2.852275 .1054995 -27.04 0.000 -3.059051 -2.6455

Node 5: 2<=s1<=4 6<=s2<=12

No of obs (Learning smpl) = 195 No of obs (Test smpl) = 176

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons -.0097753 .0760195 -0.13 0.898 -.1587707 .1392202

33 / 45

Simulations

A simple Monte Carlo

Table: Monte Carlo: R2

No. obs. σ OLS aries:LS aries:TS
250 .5 0.711 0.946 0.946
250 1 0.612 0.814 0.815
250 2 0.396 0.525 0.528
750 .5 0.710 0.946 0.947
750 1 0.611 0.813 0.816
750 2 0.393 0.520 0.529
1000 .5 0.711 0.946 0.946
1000 1 0.612 0.814 0.815
1000 2 0.393 0.523 0.524
Note: Monte Carlo results using 500 replications.

34 / 45

Simulations

Example 2: RT with regression line

s1 ≤ 4

s2 ≤ 3

y = −3 + 0.5× x1 + ε y = ε

y = 3 + ε

yes no

yes no

ε ∼ N (0, 1)
s1 ∈ {2, 4, 6, 8} , s2 ∈ {3, 6, 9, 12}

35 / 45

Simulations

aries y s1 s2, reg(x1) stop(5)

Learning Sample Test Sample
Number of obs = 522 Number of obs = 478
F(5, 516) = 339.95 F(5, 472) = 339.11
Prob > F = 0.0000 Prob > F = 0.0000
R-squared = 0.7671 R-squared = 0.7822
Adj R-squared = 0.7649 Adj R-squared = 0.7799
Root MSE = 1.0113 Root MSE = 0.9746

Node 3: 6<=s1<=8 3<=s2<=12

No of obs (Learning smpl) = 257 No of obs (Test smpl) = 239

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 -.0738962 .0543166 -1.36 0.174 -.1803548 .0325624
_cons 3.229408 .1481916 21.79 0.000 2.938958 3.519859

Node 4: 2<=s1<=4 3<=s2<=3

No of obs (Learning smpl) = 70 No of obs (Test smpl) = 63

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .5736499 .1053622 5.44 0.000 .3671437 .780156
_cons -3.173849 .2846731 -11.15 0.000 -3.731798 -2.6159

Node 5: 2<=s1<=4 6<=s2<=12

No of obs (Learning smpl) = 195 No of obs (Test smpl) = 176

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .0250965 .0669443 0.37 0.708 -.106112 .1563049
_cons .054355 .1829895 0.30 0.766 -.3042978 .4130078

36 / 45

Simulations

Some saved results
matrix list e(tree)

e(tree)[5,4]
Node Child Split_var Cut_off

r1 1 2 1 5
r2 2 4 2 4.5
r3 3 0 0 0
r4 4 0 0 0
r5 5 0 0 0

matrix list e(_tree)
e(_tree)[5,5]

Node s1_min s1_max s2_min s2_max
r1 1 2 8 3 12
r2 2 2 4 3 12
r3 3 6 8 3 12
r4 4 2 4 3 3
r5 5 2 4 6 12

matrix list e(pruning)
e(pruning)[12,2]

Complexity Impurity
r1 1 4.2953238
r2 2 1.3388132
r3 3 .94715324
r4 4 .94849036
r5 6 .95739838
r6 10 .98367937
r7 11 .99016994
r8 12 .98654955
r9 13 .9930246
r10 14 .99768252
r11 15 .99777621
r12 16 .99712844

37 / 45

Simulations

Example 3: RT with IV line

s1 ≤ 4

s2 ≤ 3

y = −3 + 0.5× x1 + ε y = ε

y = 3 + ε

yes no

yes no

ε ∼ N (0, 1), cov (x1, ε) 6= 0, cov (z1, ε) = 0
s1 ∈ {2, 4, 6, 8} , s2 ∈ {3, 6, 9, 12}

38 / 45

Simulations

aries y s1 s2, reg(x1) exog(z1) stop(5)

Learning Sample Test Sample
Number of obs = 522 Number of obs = 478
F(5, 516) = 386.75 F(5, 472) = 392.25
Prob > F = 0.0000 Prob > F = 0.0000
R-squared = 0.7899 R-squared = 0.8066
Adj R-squared = 0.7879 Adj R-squared = 0.8046
Root MSE = 1.0190 Root MSE = 0.9797

Node 3: 6<=s1<=8 3<=s2<=12

No of obs (Learning smpl) = 257 No of obs (Test smpl) = 239

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 -.152294 .1119791 -1.36 0.174 -.371769 .0671811
_cons 3.236396 .1529517 21.16 0.000 2.936616 3.536176

Exogenous variable: z1

Node 4: 2<=s1<=4 3<=s2<=3

No of obs (Learning smpl) = 70 No of obs (Test smpl) = 63

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .6430845 .2088366 3.08 0.002 .2337722 1.052397
_cons -3.168874 .2838073 -11.17 0.000 -3.725126 -2.612622

Exogenous variable: z1

Node 5: 2<=s1<=4 6<=s2<=12

No of obs (Learning smpl) = 195 No of obs (Test smpl) = 176

Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .0496941 .1334359 0.37 0.710 -.2118355 .3112237
_cons .0538148 .1855386 0.29 0.772 -.3098342 .4174638

Exogenous variable: z1

39 / 45

Simulations

Example 4: Classification trees

s1 ≤ 4

s2 ≤ 3

Class 1 w.p. .7 Class 2 w.p. .7

Class 3 w.p. .7

yes no

yes no

s1 ∈ {2, 4, 6, 8} , s2 ∈ {3, 6, 9, 12}

40 / 45

Simulations

aries y s1 s2, class

Learning sample (no.obs): 522
Test sample (no.obs): 478
No. of terminal nodels: 5
Pr. of missclassification: 0.3096

Node 3: 6<=s1<=8 3<=s2<=12
Class:3 Learning Sample Test Sample
Pr(missclassification) 0.2918 0.2762
No. of obs. 257 239

Node 4: 2<=s1<=4 3<=s2<=3
Class:1 Learning Sample Test Sample
Pr(missclassification) 0.3000 0.2857
No. of obs. 70 63

Node 11: 2<=s1<=4 12<=s2<=12
Class:2 Learning Sample Test Sample
Pr(missclassification) 0.2373 0.3729
No. of obs. 59 59

Node 16: 2<=s1<=2 6<=s2<=9
Class:2 Learning Sample Test Sample
Pr(missclassification) 0.2329 0.3770
No. of obs. 73 61

Node 17: 4<=s1<=4 6<=s2<=9
Class:2 Learning Sample Test Sample
Pr(missclassification) 0.3333 0.3393
No. of obs. 63 56

41 / 45

Simulations

s1 ≤ 4

s2 ≤ 3

Class 1 5

10

Class 2 Class 2

Class 2

Class 3

yes no

yes no

42 / 45

Conclusions

Extensions

v-fold cross-validation for small data sets
combining splitting variables in a single step
categorical splitting variables
graphs producing tree representation and sequence of Rts (T)
estimates
alternative impurity measurements
boosting

43 / 45

Thank you

44 / 45

45 / 45

	Introduction
	Predictive learning
	CART
	ARIES
	Simulations
	Appendix

