

Unitat d'Estadística i Bioinformàtica (UEB) Vall d'Hebron Institut de Recerca (VHIR)

Institut d'Investigació Sanitària acreditat per l'Instituto de Salud Carlos III (ISCIII)

Cutpoint determination in continous predictive variables in survival analysis

2014 Spanish Stata Users Group meeting

Barcelona, 23 Octubre 2014

Santiago Pérez Hoyos santi.perezhoyos@vhir.org

Motivation

How to select cutpoint Cavats Solutions Stata Flowchart Examples Further work

Motivation

 Increasing interest in use of binary categorization for continous variables involving clinical or epidemiological data (gene expressions, biomarkers, biochemical parameters, etc.)

 Main objective to build prognostic scores for a followup event

- Easy to compute
- Classify in high and low risk

Allows to calculate impact measures (hazard ratios)

Examples

 Survival 60 days after leaving ICU depending on severity scores and biochemical index

 Time to death or AIDS in HIV infected subjects depending on age, CD4 counts, RNA viral load, etc.

 Cancer survival depending on gene expression or biomarkers

How to select a cutpoint

 Based on graphics of the relationship of the continous variable with the outcome

- Median or percentiles
- Based on previous literature

 Based on best fit or the most significant relation with outcome (minimun p-value of all possible cutpoints)

Minimum p-value

 All values of prognostic variable except a proportion of extrem are cutpoints candidates

 Value that best separates outcomes according to maximum test statistics or minimum p-value is choosen

 Max Log-rank test is chosen in R Maxstat package

Likelihood profile is chosen in our aproximation in Stata

Inflation or type I error rates
Overestimate measures of effect
Loss of information when categorizing
Replicate the cutpoint in similar data

Solutions

- Bonferroni correction P_{bonf}= p_{min}*n values
 considering data out P₅ and P₉₅
 P_{alt=} -3.13 p_{min} (1+1.65 ln(p_{min}))
 Benjamini-Hochberg q values (qqvalue in stata)
- Cross-validation

Stata Template

- Define local parameters (regression type, titles, variables)
- Delete missing values, select data between percentiles 5 & 95
- Store null model
- Loop among unique values of quantitative variable and dichotomize variable
- Fit a regression model and calculate likelihood ratio test
- Save likelihood, p value in a temporary file
- Calculate Bonferroni and Benjamini-Hochberg corrections

Stata Template

- Select the minimum p-value (first obs after gsorting)
- Plot likelihood profile and hr profile
- Top ten table of p-values
- •Fit regression model with selected cutpoint
- •Use html functions for output
- Saving results & graphs in html file

Example

- Data from GEMES Spanish HIV seroconverters study
 - •2257 HIV seroconventers
 - Interested in time to death
 - CD4 and age as covariates
 - Find cutpoint for CD4 and age

Descriptiu cohort GEMES

	N individus	N Events	Taxa de incidencia*100 pers. Temps (I.C.95%)	Temps a risc
Total	2257	599	2.83 (2.61; 3.07)	21133.35

```
****** TROBAR PUNT DE TALL PER A VARIABLES CONTINUAS (CUTPOINT FINDER) *******
 local titol = "Temps a mort" // Titol del gràfic0
 local tit time = "Anys de seguiment" // Unitat de temps . Eix X
 local y ord = "% de supervivents " // Unitat de temps. Eix Y
local tiporeg="stcox"
if "`tiporeg'"=="logit" local RR="OR" // Regressió logística
if "`tiporeg'"=="stcox" local RR="HR" // Regressió de Cox
if "`tiporeg'"=="regress" local RR="B" // Regressió Lineal
if "`tiporeg'"=="poisson" local RR="RR" // Regressió Poisson
if "`tiporeg'"=="logit" local tr="exp" // Regressió logística
if "`tiporeg'"=="stcox" local tr="exp" // Regressió de Cox
if "`tiporeg'"=="regress" local tr="" // Regressió Lineal
if "`tiporeg'"=="poisson" local tr="exp" // Regressió Poisson0
local var resp="" // Variable resposta . En blanc per a Regressió de Cox
tempvar constant
gen `constant'=1
 *****
[]foreach vartalli in cd4 edad { // Variables guantitatives a dicotomizar
```


Top ten table

Anàlisi de supervivència Punts de tall de cd4

Top Ten Punts de tall de cd4

	P-value rank	Likelihood	Cutpoint	Hazard Ratio	Lower bound 95%CI	Upper bound 95%CI	p Value	p adjust Altman	Q value Benjamini-Hochberg	p adjust Bonferroni
1	1	-4100.598	240	0.34	0.29	0.40	5.89e-37	2.52e-34	3.338e-34	5.02e-34
2	2	-4100.882	241	0.34	0.29	0.40	7.84e-37	3.34e-34	3.338e-34	6.68e-34
3	3	-4101.718	242	0.34	0.29	0.40	1.82e-36	7.67e-34	3.439e-34	1.55e-33
4	4	-4101.774	243	0.34	0.29	0.40	1.92e-36	8.11e-34	3.439e-34	1.64e-33
5	5	-4101.822	244	0.34	0.29	0.40	2.02e-36	8.50e-34	3.439e-34	1.72e-33
6	6	-4102.542	245	0.34	0.29	0.40	4.16e-36	1.74e-33	5.909e-34	3.55e-33
7	7	-4104.054	246	0.35	0.30	0.41	1.91e-35	7.82e-33	2.188e-33	1.63e-32
8	8	-4104.128	246.5	0.35	0.30	0.41	2.05e-35	8.41e-33	2.188e-33	1.75e-32
9	9	-4105.076	247	0.35	0.30	0.41	5.33e-35	2.16e-32	5.048e-33	4.54e-32
10	10	-4105.958	248	0.35	0.30	0.41	1.30e-34	5.18e-32	1.104e-32	1.10e-31

valor optimo 240.00, q value 0.0000

14

	P valor =	0.0000	Bonferroni=	0.0000 Q valor =0.000
--	-----------	--------	-------------	-----------------------

cd4 >240.00	N individus	N Events	Taxa de incidencia*100 pers. Temps (I.C.95%)	Temps a risc	Temps Q ₂₅	Temps Mediana (Temps)	Temps Q ₇₅	P valor
No(<240.00)	491	274	5.84 (5.17; 6.57)	4693.86	6.45	10.16	-	
Si(>240.00)	1762	322	1.96 (1.76; 2.19)	16393.95	13.47		-	0.0000
Total	2253	596	2.83 (2.60; 3.06)	21087.81	9.32		-	

IJ

Cox after cutpoint

Regressio multivariant stcox

Number of obs = 2253

Vall d'Hebron

VARI	ABLE	HR	(95%CI)	p-value
cd4 >240.00	No(<240.00)	1		0.0000
	Si(>240.00)	0.34	(0.29; 0.40)	0.0000

LL model= -4100.60 ; AIC model= 8203.20 ; BIC model= 8208.92 p valor ajustado 0.0000

Regressio multivariant stcox. p valors ajustats

Number of obs = 2253

VARI	ABLE	HR	(95%CI)	p-value
cd4 >240.00	No(<240.00)	1		0.0000
	Si(>240.00)	0.34	(0.29; 0.40)	0.0000

valors p ajustats Bonferroni

Regressio multivariant stcox. p valors ajustats

Number of obs = 2253

VARI	ABLE	HR	(95%CI)	p-value
cd4 >240.00	No(<240.00)	1		0.0000
	Si(>240.00)	0.34	(0.29; 0.40)	0.0000

valors p ajustats Altman

Survival after cutpoint

Anàlisi de supervivència Punts de tall de edad

Тор Т	'en F	unts	de	tall	de	edad	
-------	-------	------	----	------	----	------	--

	P-value rank	Likelihood	Cutpoint	Hazard Ratio	Lower bound 95%CI	Upper bound 95%CI	p Value	p adjust Altman	Q value Benjamini-Hochberg	p adjust Bonferroni
1	1	-1818.052	32	1.41	1.02	1.94	.0440258	.572275	.33807288	.9685677
2	2	-1818.123	34	1.49	1.02	2.18	.0478806	.6016266	.33807288	1
3	3	-1818.315	33	1.41	1.00	2.00	.0602932	.685816	.33807288	1
4	4	-1818.331	22	1.29	0.98	1.70	.0614678	.6930518	.33807288	1
5	5	-1818.612	31	1.31	0.97	1.78	.0866564	.8233535	.37960526	1
6	6	-1819.226	35	1.33	0.88	2.02	.1912814	1.03524	.37960526	1
7	7	-1819.232	30	1.22	0.91	1.62	.1929407	1.035614	.37960526	1
8	8	-1819.252	36	1.37	0.87	2.16	.1983415	1.036324	.37960526	1
9	9	-1819.336	28	1.18	0.91	1.52	.2226326	1.030406	.37960526	1
10	10	-1819.338	24	1.16	0.91	1.48	.2232034	1.030096	.37960526	1

edad >32.00	N individus	N Events	Taxa de incidencia*100 pers. Temps (I.C.95%)	Temps a risc	Temps Q ₂₅	Temps Mediana (Temps)	Temps Q ₇₅	P valor
No(<32.00)	1332	230	1.96 (1.72; 2.23)	11717.50	14.20		-	
Si(>32.00)	363	46	2.39 (1.75; 3.19)	1924.95	9.58		-	0.0358
Total	1695	276	2.02 (1.79; 2.28)	13642.45	13.64			

Cox after cutpoint

Regressio multivariant stcox

Number of obs = 1695

Vall d'Hebron

VARL	ABLE	HR	(95%CI)	p-value
edad >32.00	No(<32.00)	1		0.0267
	Si(>32.00)	1.41	(1.02; 1.94)	0.0307

LL model= -1818.05 ; AIC model= 3638.10 ; BIC model= 3643.54 p valor ajustado 0.3381

Regressio multivariant stcox. p valors ajustats

Number of obs = 1695

VARL	ABLE	HR	(95%CI)	p-value
edad >32.00	No(<32.00)	1		0 0077
	Si(>32.00)	1.41	(1.02; 1.94)	0.8077

valors p ajustats Bonferroni

Regressio multivariant stcox. p valors ajustats

Number of obs = 1695

VARIABLE		HR	(95%CI)	p-value
edad >32.00	No(<32.00)	1		0 5117
	Si(>32.00)	1.41	(1.02; 1.94)	0.5117

valors p ajustats Altman

Further work

Build an ado function in Stata

Extent to more than one variable

Extent to more than one cutpoint

Mazudar M, Glassman JR. Tutorial in Biostatistics: Categorizing a prognostic variable review of methods.
 Code for easy implementation and applications to decision making about Cancer treatments. Sata in Med.2000; 19: 113-132

•William BA, Mandrekar JN, Mandrekar SJ, Cha SS, Furth AF. Finding optimal cutpoints for continous covariates with binary and time-to-event outcomes. Techical Report Series #79. Department of Health Scientes Research Mayo Clinic. 2006.

•Hothorn T, Lausen B. Maximally selected rank statistics with several p-value approximations. R Package 'maxstat' July 2, 2014

Thanks

Gràcies

Gracias