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Introduction

The best way to present results depends on the readers we are
addressing.
For example, health practitioners are usually interested in individual
predictions, and, eventually, the impact of individual decisions.
Policy makers are usually interested in population predictions, and,
eventually, the impact of policy decisions.

We will discuss different tools to visualize and explain results to
different audiences, which may be useful also in the teaching
environment.



Binary models: probabilities

The default Stata prediction for binary models are probabilities.
Health practitioners would be interested in individual probabilities.
In the following model, we might be interested in the predicted
probability of having high blood pressure for an individual (using
the nhanes2d data).



In-sample predictions are computed with predict; prediction by
default is the probability (option pr); we can use predictnl, which
in addition gives us the standard errors:

. use nhanes2d, clear // webuse if data not in directory

. logit highbp height weight age female, nolog vsquish noheader

highbp Coef. Std. Err. z P>|z| [95% Conf. Interval]

height -.0355632 .0036591 -9.72 0.000 -.0427348 -.0283916
weight .0499966 .0018348 27.25 0.000 .0464004 .0535927

age .0469231 .0014573 32.20 0.000 .0440668 .0497794
female -.3752472 .0641992 -5.85 0.000 -.5010753 -.2494192
_cons -.074346 .6230625 -0.12 0.905 -1.295526 1.146834



. predict p
(option pr assumed; Pr(highbp))

. predictnl p2 = predict(pr), se(se)

. list height weight age fem p p2 se in 1/5

height weight age female p p2 se

1. 174.598 62.48 54 0 .3484242 .3484242 .0097808
2. 152.297 48.76 41 1 .1818179 .1818179 .0079658
3. 164.098 67.25 21 1 .1258913 .1258913 .0059445
4. 162.598 94.46 63 1 .8094957 .8094957 .0093575
5. 163.098 74.28 64 1 .614661 .614661 .0093765



In-sample or out-of-sample predictions after estimation can also be
computed using margins, which, by default, computes the same
prediction as predict, and displays additional information,
including CIs.:

. margins, at(height=174.598 weight=62.48 age =54 female=0)

Adjusted predictions Number of obs = 10351
Model VCE : OIM

Expression : Pr(highbp), predict()
at : height = 174.598

weight = 62.48
age = 54
female = 0

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons .3484242 .0097808 35.62 0.000 .3292541 .3675942



Statisticians are familiar with the importance of presenting
confidence intervals together with point estimates.
Even thought the CI concept is difficult to non-statisticians,
everybody has some intuitive understanding of the relationship of
the length of the confidence interval with the reliability of the
estimate we are presenting.

Variables not mentioned in at() option will be accounted by
averaging results. When trying to understand the problem,
performing as many plots as possible might help to get insight into
it.

We can use marginsplot after margins to visualize predictions at
different values of a covariate:



. margins, at(height = 170 age = 50 female = 0 weight = (60(10)100)) noatleg

Adjusted predictions Number of obs = 10351
Model VCE : OIM

Expression : Pr(highbp), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .3155848 .0095498 33.05 0.000 .2968676 .334302
2 .4318833 .0088948 48.55 0.000 .4144498 .4493168
3 .55621 .0090589 61.40 0.000 .5384548 .5739652
4 .6738742 .0099572 67.68 0.000 .6543584 .6933901
5 .7730697 .0102775 75.22 0.000 .7529261 .7932133

. marginsplot
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Policy makers would be more interested in population averages of
probabilities. margins, without at() option, computes averages of
predictions over the sample.

. *vce(robust) option is required for -vce(uncondional)-

. quietly logit highbp height weight age female, vce(robust)

. margins, vce(unconditional)

Predictive margins Number of obs = 10351

Expression : Pr(highbp), predict()

Unconditional
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons .4227611 .0048557 87.06 0.000 .413244 .4322782

. quietly predict p

. quietly summ p

. display r(mean)

.42276109

If we want to use this measure as an estimator of the population
average probability, we need to use the option
vce(unconditional) to account for the fact that we are working
on a sample.



Odds ratios

There is more than one approach to interpreting output from a
logistic regression; many researchers advocate for the use of odds
ratios. This is because the model itself assumes that (in the
absence of interactions) those are constant over covariate patterns,
and they can be computed by exponentiating the coefficients.



Example: hypothetical example for the effect of carrot consumption
on the need for lenses (from the UCLA website):

. *use http://www.ats.ucla.edu/stat/stata/faq/eyestudy

. use eyestudy, clear

. logit lenses i.carrot i.gender latitude, nolog vsquish noheader or

lenses Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.carrot .347253 .1472796 -2.49 0.013 .1512265 .7973779
2.gender .6267289 .2630932 -1.11 0.266 .275268 1.426934
latitude .977823 .0277312 -0.79 0.429 .9249538 1.033714

_cons 5.476334 6.237333 1.49 0.135 .5874952 51.04763

. quietly predict p

. list carrot gender latitude p in 1/5

carrot gender latitude p

1. 0 1 33 .7231932
2. 0 2 46 .5502224
3. 1 1 32 .4812792
4. 0 2 26 .6570335
5. 1 1 25 .5205055

We can see that probabilities vary across covariate patterns



Odds for an individual with a specific covariate pattern, are defined
as:

Odds for an event =
probability of an event

1− probability of an event

which is, in our case:

Odds for an event =
probability of lenses = 1

1− probability of lenses = 1



Odds ratio are defined for each covariate; Usually, researchers are
interested in odds ratio for the treatment variable:

Odds for an event =
Odds assuming that treatment = 1
Odds assuming that treatment = 0

OR is the quotient for the odds for an individual assuming that
undertook the treatment, and the odds for the same individual,
assuming that didn’t undertake the treatment.



An easy way to explain this concept is to show how to directly
predict these values:
. *create a backup variable for carrot
. generate carrot_back = carrot

.

. *compute odds for each observation, assuming carrot = 1

. replace carrot = 1
(49 real changes made)

. predict p1
(option pr assumed; Pr(lenses))

. generate odds1 = p1/(1-p1)

.

. *compute odds for each observation, assuming carrot = 0

. replace carrot = 0
(100 real changes made)

. predict p0
(option pr assumed; Pr(lenses))

. generate odds0 = p0/(1-p0)

.

. *compute odds ratios

. generate OR_carrot = odds1/odds0

. *restore original variable for carrot

. replace carrot = carrot_back
(51 real changes made)



. list latitude gender odds1 odds0 OR_carrot in 1/5

latitude gender odds1 odds0 OR_car~t

1. 33 1 .9072431 2.612628 .347253
2. 46 2 .4248019 1.223321 .347253
3. 32 1 .9278194 2.671883 .347253
4. 26 2 .6652452 1.915737 .347253
5. 25 1 1.08553 3.126049 .347253

. logit, or

Logistic regression Number of obs = 100
LR chi2(3) = 7.65
Prob > chi2 = 0.0538

Log likelihood = -65.308053 Pseudo R2 = 0.0553

lenses Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

1.carrot .347253 .1472796 -2.49 0.013 .1512265 .7973779
2.gender .6267289 .2630932 -1.11 0.266 .275268 1.426934
latitude .977823 .0277312 -0.79 0.429 .9249538 1.033714

_cons 5.476334 6.237333 1.49 0.135 .5874952 51.04763

Naturally, this can be used for continuous covariates also.



In short, if the treatment variable is not part of an interaction in
the logit model, odds ratios are the same for all the individuals, and
therefore, the same estimates work for individual level and for
population level.

Note: if the treatment variable is interacted with another covariate,
now odds ratios are not constant, and need to be computed either
with predictnl or margins.



Risk ratios: easier to interpret, but not displayed on the command
output.

In a logistic model with other covariates (in addition to the
treatment), there is variation for the RR among individuals.

Risk ratio =
probability of an event assuming treatment = 1
probability of an event assuming treatment = 0

Naturally, we can compute those manually, and we could use nlcom
to compute confidence intervals.
If we want to choose the domain for our plots, we can use
automated tools for our computations and our confidence intervals



Note: the following computations of RR are valid for any model for
binary dependent variable with independent observations (e.g.
probit, cloglog, etc).

ORs are sometimes interpreted as RRs, which can be misleading.
Nowadays, there is not need to make such rough approximations,
because we have tools to obtain what we want.



Obtaining risk-ratios by computing log-risk-ratios.
margins, dydx() computes derivatives of the predictions respect
to a continuous covariate, or finite differences for a dummy
variable. That is, if the prediction is f (x), for a binary covariate x,

margins, dydx(x)

will compute f (1)− f (0).
The same way,

margins, eydx(x)

will compute, for this binary covariate,

log(f (1))− log(f (0)) = log(f (1)/f (0))

In our case the default prediction is
f (i) = pi = probability of positive outcome when treatment = i ;
therefore, the computed value will be log(p1/p0) = log(RR)



Example: probability of a newborn with low weight (Hosmer &
Lemeshow data) (“smoke” would be our “negative treatment”)

. use lbw, clear //webuse if not in current directory
(Hosmer & Lemeshow data)

. logit low i.smoke age i.race, or nolog vsquish

Logistic regression Number of obs = 189
LR chi2(4) = 15.81
Prob > chi2 = 0.0033

Log likelihood = -109.4311 Pseudo R2 = 0.0674

low Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

smoke
smoker 3.00582 1.118001 2.96 0.003 1.449982 6.231081

age .9657186 .0322573 -1.04 0.296 .9045206 1.031057
race

black 2.749483 1.356659 2.05 0.040 1.045318 7.231924
other 2.876948 1.167921 2.60 0.009 1.298314 6.375062
_cons .365111 .3146026 -1.17 0.242 .0674491 1.976395



We use margins to compute log-risk-ratios for smoke; post option
allows us to use those results afterwards.
. margins, eydx(smoke) predict(pr) at(age=(15(10)45)) over(race) post noatl vsq
> uish

Average marginal effects Number of obs = 189
Model VCE : OIM

Expression : Pr(low), predict(pr)
ey/dx w.r.t. : 1.smoke
over : race

Delta-method
ey/dx Std. Err. z P>|z| [95% Conf. Interval]

1.smoke
_at#race
1#white .7954289 .2937747 2.71 0.007 .2196411 1.371217
1#black .5419842 .2148224 2.52 0.012 .12094 .9630285
1#other .5298297 .1774735 2.99 0.003 .181988 .8776714
2#white .8649764 .3055523 2.83 0.005 .2661049 1.463848
2#black .6349475 .2320708 2.74 0.006 .1800971 1.089798
2#other .6230277 .1930333 3.23 0.001 .2446894 1.001366
3#white .9223918 .3254033 2.83 0.005 .2846131 1.56017
3#black .7233161 .2743695 2.64 0.008 .1855617 1.261071
3#other .7122553 .2418088 2.95 0.003 .2383188 1.186192
4#white .9680835 .3427932 2.82 0.005 .2962212 1.639946
4#black .8029534 .3190297 2.52 0.012 .1776668 1.42824
4#other .7932087 .2944309 2.69 0.007 .2161347 1.370283

Note: ey/dx for factor levels is the discrete change from the base level.



Now, risk ratios can be obtaining by exponentiating the log-risk
ratios; (because we posted our results, we can re-display them with
ereturn display)

. ereturn display, eform("risk ratios") vsquish

Delta-method
risk ratios Std. Err. z P>|z| [95% Conf. Interval]

1.smoke
_at#race
1#white 2.215391 .6508257 2.71 0.007 1.24563 3.940141
1#black 1.719415 .369369 2.52 0.012 1.128557 2.619618
1#other 1.698643 .3014642 2.99 0.003 1.1996 2.405292
2#white 2.37495 .7256714 2.83 0.005 1.304872 4.32256
2#black 1.886923 .4378997 2.74 0.006 1.197334 2.973673
2#other 1.864565 .3599232 3.23 0.001 1.277225 2.721998
3#white 2.515299 .8184866 2.83 0.005 1.329248 4.759632
3#black 2.061257 .5655462 2.64 0.008 1.203894 3.529197
3#other 2.038584 .4929474 2.95 0.003 1.269114 3.274587
4#white 2.632894 .9025382 2.82 0.005 1.344768 5.154891
4#black 2.232124 .7121137 2.52 0.012 1.194427 4.171352
4#other 2.210478 .6508329 2.69 0.007 1.24127 3.936463



Another trick to compute and plot risk ratios (directly) is by using
gsem. we can fit the same model twice with the same command,
and then compute the quotient of predictions with treatment = 1
and treatment = 0.

. use lbw, clear
(Hosmer & Lemeshow data)

. keep low smoke age race

. gen obs = _n

. quietly expand 2, gen(repl)

. quietly reshape wide low smoke, i(obs) j(repl)

.

. *just show the gsem basic syntax (we add the constraints later)

. quietly gsem (low0 <- smoke0 age i.race, logit) ///
> (low1 <- smoke1 age i.race, logit), noestimate



. *estimate the model

. gsem (low0 <- i1.smoke0@a age@b i2.race@c2 i3.race@c3, logit) ///
> (low1 <- i1..smoke1@a age@b i2.race@c2 i3.race@c3, logit) , nolog vsquis
> h nocnsr

Generalized structural equation model Number of obs = 189
Log likelihood = -218.8622

Coef. Std. Err. z P>|z| [95% Conf. Interval]

low0 <-
smoke0

smoker 1.10055 .263005 4.18 0.000 .5850701 1.616031
age -.0348828 .023619 -1.48 0.140 -.0811752 .0114097

race
black 1.011413 .348903 2.90 0.004 .3275756 1.69525
other 1.05673 .2870559 3.68 0.000 .494111 1.619349
_cons -1.007554 .6201877 -1.62 0.104 -2.223099 .2079917

low1 <-
smoke1

smoker 1.10055 .263005 4.18 0.000 .5850701 1.616031
age -.0348828 .023619 -1.48 0.140 -.0811752 .0114097

race
black 1.011413 .348903 2.90 0.004 .3275756 1.69525
other 1.05673 .2870559 3.68 0.000 .494111 1.619349
_cons -1.007554 .6201877 -1.62 0.104 -2.223099 .2079917



Use margins to obtain the risk ratios for variable smoke
. margins, expression(predict(outcome(low1))/predict(outcome(low0)) ) ///
> at(smoke0 = 0 smoke1=1 age =(15(10)45) race=(1(1)3)) ///
> noatlegend vsquish
Warning: prediction constant over observations.

Adjusted predictions Number of obs = 189
Model VCE : OIM

Expression : predict(outcome(low1))/predict(outcome(low0))

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 2.215391 .5881502 3.77 0.000 1.062638 3.368144
2 1.719415 .3266628 5.26 0.000 1.079168 2.359662
3 1.698643 .2853472 5.95 0.000 1.139373 2.257913
4 2.37495 .6675446 3.56 0.000 1.066587 3.683313
5 1.886923 .3982498 4.74 0.000 1.106368 2.667478
6 1.864565 .3518965 5.30 0.000 1.17486 2.554269
7 2.515299 .7537232 3.34 0.001 1.038029 3.99257
8 2.061257 .5062034 4.07 0.000 1.069117 3.053398
9 2.038584 .4614366 4.42 0.000 1.134185 2.942983

10 2.632894 .8304642 3.17 0.002 1.005214 4.260574
11 2.232124 .6263308 3.56 0.000 1.004538 3.459709
12 2.210478 .5870203 3.77 0.000 1.059939 3.361016



We can use marginsplot to plot the risk ratios; this time I’m using
bydimension() option to show several plots in the same graph.
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Note: Constraints are included in the previous model to estimate
the correct covariance matrix (we don’t want to count the same
thing twice)

Notice that the two confidence intervals obtained by the two
methods are not exactly the same.

The first method computes CIs based on the asymptotic normality
of the log-RR; (CIs are computed for the log-RR, and then
exponentiated).

The second method computes CIs based on the asymptotic
normality of the RRs. Standard errors are computed used the delta
methods, and these are used to obtain symmetric CIs.

Both methods are asymptotically correct.



Out-of-sample predictions (when we don’t have the sample)

We can always apply a formula (manually) to compute
out-of-sample predictions. However, if we have the original
covariance matrix, we can use Stata to compute those predictions
with CIs.
Without the original covariance, point estimates can be still
computed. Also, out-of-sample validation diagnostics can be
performed using measures that don’t require the variance



Let’s assume we have the output from the following model, and we
want to compute predictions for a new individual.

. logit highbp c.weight#i.female c.weight##c.age c.weight#c.weight, nolog vsqu
> ish

Logistic regression Number of obs = 10351
LR chi2(5) = 2383.07
Prob > chi2 = 0.0000

Log likelihood = -5859.2282 Pseudo R2 = 0.1690

highbp Coef. Std. Err. z P>|z| [95% Conf. Interval]

female#
c.weight

1 .0007826 .000647 1.21 0.226 -.0004855 .0020507
weight .0889377 .013967 6.37 0.000 .061563 .1163125

age .1046649 .0075367 13.89 0.000 .0898933 .1194365
c.weight#

c.age -.0007447 .0001012 -7.36 0.000 -.0009431 -.0005463
c.weight#
c.weight -.0000596 .0000756 -0.79 0.431 -.0002078 .0000886

_cons -8.971899 .6627519 -13.54 0.000 -10.27087 -7.672929



If we had the sample, we could use margins as explained before. If
we don’t, we can use Stata to obtain predictions (without
implementing the formulas manually), by posting the results.

We first create an artificial dataset to run the model; this is the
easiest way to get matrices with the right labels, where we then
replace the actual results.

Then, we repost these matrices with the actual results, so the
post-estimation commands can use them for predictions.



. clear

. program drop _all

. set seed 1357

. set obs 100
obs was 0, now 100

. gen weight = rnormal()

. gen female = runiform()<.5

. gen age = rnormal()

. gen highbp = runiform()<.5

.

. quietly logit highbp c.weight#ib0.female c.weight##c.age c.weight#c.weight

. mat list e(b)

e(b)[1,7]
highbp: highbp: highbp: highbp: highbp: highbp:

0b.female# 1.female# c.weight# c.weight#
co.weight c.weight weight age c.age c.weight

y1 0 .273594 -.35548071 .0116049 -.10238474 .17071731

highbp:

_cons
y1 -.27933898



. mat b = e(b)

. mat V = e(V)

. mat b1 = [0, .0007826, .0889377,.1046649, -.0007447 ,-.0000596, -8.9718986]

. mat V1 = J(7,7,0)

.

. mat b[1,1] =b1

. mat list b

b[1,7]
highbp: highbp: highbp: highbp: highbp: highbp:

0b.female# 1.female# c.weight# c.weight#
co.weight c.weight weight age c.age c.weight

y1 0 .0007826 .0889377 .1046649 -.0007447 -.0000596

highbp:

_cons
y1 -8.9718986

. mat V[1,1] = V1



.

. program myrepost, eclass
1. ereturn repost b=b V=V
2. end

.

. myrepost

. margins, at(weight = 80 female = 0 age = 60) noatlegend

Adjusted predictions Number of obs = 100
Model VCE : OIM

Expression : Pr(highbp), predict()

Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_cons .6146762 . . . . .



Notes:
ib0 notation has been used in the first logistic model to ensure that
the base category is the same as in the original.
If you have a covariance matrix, you should post it. (you need it to
get standard errors). If you can’t obtain it, you should post zeros in
e(V) to avoid misleading results.



This trick also has been used to get out-of-sample validation, that
is, to assess how the original model would fit on a second dataset.
(some diagnostic methods do not depend on the covariance matrix).

As an example, we will see how the original model fits to our
simulated dataset (naturally, we shouldn’t expect a good fit).



. estat gof

Logistic model for highbp, goodness-of-fit test

number of observations = 100
number of covariate patterns = 100

Pearson chi2(94) = 375573.13
Prob > chi2 = 0.0000

. lroc

Logistic model for highbp

number of observations = 100
area under ROC curve = 0.4556
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Final Remarks

I There are many ways to present and visualize results from our
estimations; the way we choose should be targeted to our
specific audience and purposes.

I A powerful tool to interpret results (not discussed here in
depth) is computing marginal effects. You might want to
explore this possibility also.

I When we fit a logistic model, odds ratios are easy to compute,
but not so easy to interpret. If you believe that your audience
will be more comfortable with risk ratios, show those

I When computing predictions for a particular individual, it is
always advisable to directly show the predictions, eventually for
different scenarios, with their confidence intervals.

I The word “adjusted” has been used in many ways in the
literature. If you report adjusted results, make sure that you
explain what it means in your context.


