Treatment Effects Using Stata

Enrique Pinzón

StataCorp LP

October, 2013 Madrid

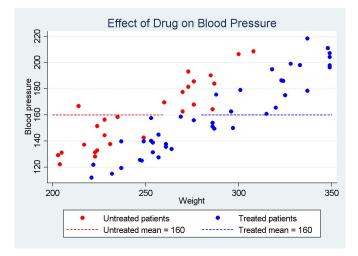
Motivation

We are interested in the outcomes of receiving a treatment in scenarios were researchers have observational data.

For instance:

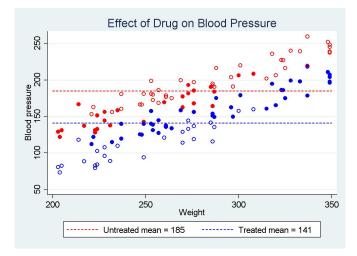
- The impact on public education outcomes for schools that received a transfer and those that did not.
- Employment outcomes for individuals that participated in a job training program and those that did not.
- The effect on birth weight for babies of mothers that smoked relative to those of mothers that did not.

Observed Effect of Statin on Blood Presure



315

Potential Outcomes of Statin on Blood Presure



• We cannot observe individuals in both states simultaneously

- Design a random experiment
- We cannot do this because of technical or ethical concerns
- We need to account for covariates that are correlated with the treatment
- We will think of the problem in terms of models that govern the treatment result and the outcome

• We cannot observe individuals in both states simultaneously

- Design a random experiment
- We cannot do this because of technical or ethical concerns
- We need to account for covariates that are correlated with the treatment
- We will think of the problem in terms of models that govern the treatment result and the outcome

• We cannot observe individuals in both states simultaneously

- Design a random experiment
- We cannot do this because of technical or ethical concerns
- We need to account for covariates that are correlated with the treatment
- We will think of the problem in terms of models that govern the treatment result and the outcome

- We cannot observe individuals in both states simultaneously
 - Design a random experiment
 - We cannot do this because of technical or ethical concerns
- We need to account for covariates that are correlated with the treatment
- We will think of the problem in terms of models that govern the treatment result and the outcome

Notation and Definitions

- The potential outcome is denoted by the random variable y_{τ} with $\tau \in \{0, 1, \dots, K\}$. The potential realizations will be denoted by:
 - ▶ y_{0i} is the outcome individual *i* if they do not receive the treatment, where $i = 1 \dots n$
 - > y_{ki} is the potential outcome for individual *i* if they receive different discrete levels of the treatment, where $k = 1 \dots K$
 - Usually people think about the binary case where there are only two levels y_{0i} and y_{1i}
- Potential outcome mean

$$POM = E(y_{\tau})$$

Average treatment effect

$$ATE = E\left(y_{ki} - y_{0i}\right)$$

Average treatment effect on the treated

$$ATET = E(y_{ki} - y_{0i}|\tau = k)$$

 From now on we will focus on binary treatments. All results are valid for multivariate treatments unless explicitly noted.

(StataCorp LP)

• We will be dealing with a cross-sectional random sample of *n* individuals

• Overlap:

$$0 < P(\tau_i = 1 | X_i = x) < 1$$

 Conditional Independence: Conditional on the covariates, X, the potential outcomes, y₀, y₁, and the treatment, τ, are independent

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

 $\tau = \begin{cases} 1 & \text{if } w\gamma + \eta > 0 \\ 0 & \text{otherwise} \end{cases}$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

 $\tau = \begin{cases} 1 & \text{if } w\gamma + \eta > 0\\ 0 & \text{otherwise} \end{cases}$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

 $\tau = \begin{cases} 1 & \text{if } w\gamma + \eta > 0\\ 0 & \text{otherwise} \end{cases}$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

 $\tau = \begin{cases} 1 & \text{if } w\gamma + \eta > 0\\ 0 & \text{otherwise} \end{cases}$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

 $\tau = \begin{cases} 1 & \text{if } w\gamma + \eta > 0 \\ 0 & \text{otherwise} \end{cases}$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

$$\tau = \left\{ \begin{array}{ll} 1 & \text{if} \quad w\gamma + \eta > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

OUTCOME MODEL:

$$y_0 = x\beta_0 + \varepsilon_0$$

$$y_1 = x\beta_1 + \varepsilon_1$$

$$y = \tau y_1 + (1 - \tau) y_0$$

TREATMENT MODEL:

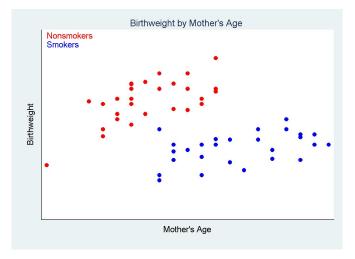
$$\tau = \left\{ \begin{array}{ll} 1 & \text{if} \quad w\gamma + \eta > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

- w refers to the covariates that determine the treatment
- y_0 and y_1 are not observed. Only y, x, w, and τ are observed
- The random disturbances η , ε_0 , and ε_1 are independent
- The functional forms for the outcome model do not need to be linear
- All the estimators we will see arise from combinations of the outcome model and the treatment model

Estimators Discussed Today

- Regression Adjustment (RA)
- Inverse Probability Weighting (IPW)
- Augmented Inverse Probability Weighting (AIPW)
- Inverse Probability Weighted Regression Adjustment (IPWRA)
- Nearest Neighbor Matching
- Propensity Score Matching

Effect of Smoking Mothers on Birthweight



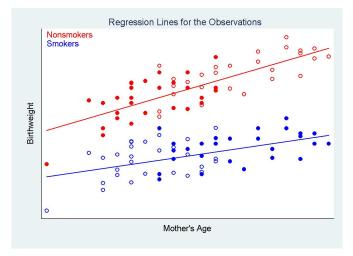
315

Regression Adjustment (RA)

- We model the potential outcome and do not say anything about the treatment mechanism
- A conditional expectation is estimated for the treatment and control groups.
- The results from the estimations are used to compute POMs and thereafter ATEs, and ATETs.

A = A = A = A = A = A = A

Graphical Representation of RA Estimation



315

Models for the Potential Outcome

_	Outcome Model	$E(y x,z,\tau)$
_	linear	$m{x}eta_{ au}$
	logit	$exp(xeta_{ au}) / \{1 + exp(xeta_{ au})\}$
	probit	$\Phi(x eta_{ au})$
	poisson	$exp(xeta_{ au})$
_	hetprobit	$\Phi(\mathbf{x}eta_{ au}/\mathbf{z}lpha_{ au})$

Data from Cattaneo (2010) Journal of Econometrics

bweight: infant birth weight (grams) 1 if low birthweight baby lbweight: 1 if mother smoked mbsmoke: trimester of first prenatal care visit prenatal: 1 if first baby fbaby: 1 if mother married mmarried: mother's age mage: father's age fage: 1 if alcohol consumed during pregnancy alcohol:

Sample of newborns from the United States from 1997

Data from Cattaneo (2010) Journal of Econometrics

bweight:	infant birth weight (grams)
lbweight:	1 if low birthweight baby
mbsmoke:	1 if mother smoked
prenatal:	trimester of first prenatal care visit
fbaby:	1 if first baby
mmarried:	1 if mother married
mage:	mother's age
fage:	father's age
alcohol:	1 if alcohol consumed during pregnancy

Sample of newborns from the United States from 1997

RA Linear Outcome Average Treatment Effect (ATE)

. teffects ra (bweight prenatall mmarried mage fbaby) (mbsmoke) Iteration 0: EE criterion = 7.734e-24 Iteration 1: EE criterion = 1.196e-25 Treatment-effects estimation Number of obs = 4642 Estimator : regression adjustment Outcome model : linear Treatment model: none

bweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-239.6392	23.82402	-10.06	0.000	-286.3334	-192.945
POmean mbsmoke nonsmoker	3403.242	9.525207	357.29	0.000	3384.573	3421.911

RA Average Treatment Effect on the Treated (ATET)

. teffects ra (bweight prenatall mmarried mage fbaby) (mbsmoke), atet Iteration 0: EE criterion = 7.629e-24 Iteration 1: EE criterion = 2.697e-26 Treatment-effects estimation Number of obs = 4642 Estimator : regression adjustment Outcome model : linear Treatment model: none

bweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATET mbsmoke (smoker vs nonsmoker)	-223.3017	22.7422	-9.82	0.000	-267.8755	-178.7278
POmean mbsmoke nonsmoker	3360.961	12.75749	263.45	0.000	3335.957	3385.966

RA Probit Outcome ATE

. teffects ra (lbweight prenatall mmarried mage fbaby, probit) (mbsmoke)
Iteration 0: EE criterion = 1.018e-18
Iteration 1: EE criterion = 6.251e-34
Treatment-effects estimation Number of obs = 4642
Estimator : regression adjustment
Outcome model : probit
Treatment model: none

lbweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	.0500546	.0118733	4.22	0.000	.0267833	.0733259
POmean mbsmoke nonsmoker	.0517931	.003734	13.87	0.000	.0444745	.0591116

RA Probit ATET

. teffects ra (lbweight prenatall mmarried mage fbaby, probit) (mbsmoke), atet Iteration 0: EE criterion = 1.018e-18 Iteration 1: EE criterion = 2.165e-34 Treatment-effects estimation Number of obs = 4642 Estimator : regression adjustment Outcome model : probit Treatment model: none

lbweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATET mbsmoke (smoker vs nonsmoker)	.0458142	.0119394	3.84	0.000	.0224134	.0692149
POmean mbsmoke nonsmoker	.0641478	.0054295	11.81	0.000	.0535063	.0747894

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回日 のなべ

Inverse Probability Weighting (IPW)

- In contrast to RA estimators, IPW estimate models for the treatment
- We fit a model for the treatment and compute the probabilities of treatment
- We then compute a weighted average, using the inverse of the probability of being in each group.

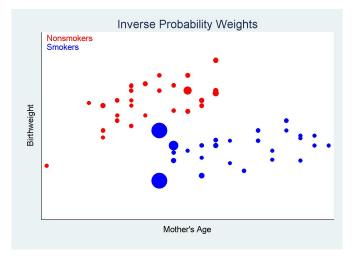
A = A = A = A = A = A = A

Inverse Probability Weight Calculation

. logistic mbsmoke mmarried alcohol mage fedu Logistic regression Log likelihood = -18.339432				Number of obs = LR chi2(4) = Prob > chi2 = Pseudo R2 =		60 46.50 0.0000 0.5590	
mbsmoke	Odds Ratio	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
mmarried alcohol mage fedu _cons	.0785086 18.81727 2.147569 .8189843 4.46e-07	.0909212 27.98003 .459327 .1157528 2.12e-06	-2.20 1.97 3.57 -1.41 -3.07	0.028 0.048 0.000 0.158 0.002	.0081 1.020 1.41 .6208 3.96e	649 218 252	.7597976 346.9259 3.265909 1.080393 .0050329

```
. predict ps
(option pr assumed; Pr(mbsmoke))
. replace ps = 1/ps if mbsmoke==1
(30 real changes made)
. replace ps = 1/(1-ps) if mbsmoke==0
(30 real changes made)
```

Inverse Propability Weighting Graphically



315

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Treatment Models

Treatment Model	$P(\tau w, z)$
logit	$exp(w\gamma_{\tau})/\{1+exp(w\gamma_{\tau})\}$
probit	$\Phi\left(\textit{W}\gamma_{ au} ight)$
hetprobit	$\Phi(w\gamma_{ au}/z heta_{ au})$

• Only the logit model is available for multivalued treatments

$$P(\tau|w) = \frac{exp(w\gamma_{\tau})}{1 + \sum_{k=1}^{K} exp(w\gamma_{k})}$$

Treatment Models

Treatment Model	$P(\tau w, z)$
logit	$\overline{exp(w\gamma_{\tau})/\{1+exp(w\gamma_{\tau})\}}$
probit	$\Phi\left(\textit{W}\gamma_{ au} ight)$
hetprobit	$\Phi(w\gamma_{ au}/z heta_{ au})$

Only the logit model is available for multivalued treatments

$$P(\tau|w) = \frac{exp(w\gamma_{\tau})}{1 + \sum_{k=1}^{K} exp(w\gamma_{k})}$$

IPW ATE

. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu)
Iteration 0: EE criterion = 1.713e-21
Iteration 1: EE criterion = 4.794e-27
Treatment-effects estimation Number of obs = 4642
Estimator : inverse probability weighted
Outcome model : weighted mean
Treatment model: logit

bweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-231.7203	25.17975	-9.20	0.000	-281.0717	-182.3689
POmean mbsmoke nonsmoker	3403.527	9.576358	355.41	0.000	3384.757	3422.296

IPW ATET

. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu), atet Iteration 0: EE criterion = 1.714e-21 Iteration 1: EE criterion = 3.735e-27 Treatment-effects estimation Number of obs = 4642 Estimator : inverse probability weighted Outcome model : weighted mean Treatment model: logit

bweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATET mbsmoke (smoker vs nonsmoker)	-225.6992	23.7133	-9.52	0.000	-272.1764	-179.222
POmean mbsmoke nonsmoker	3363.359	14.28989	235.37	0.000	3335.351	3391.367

IPW ATE

. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)
Iteration 0: EE criterion = 4.622e-21
Iteration 1: EE criterion = 8.622e-26
Treatment-effects estimation Number of obs = 4642
Estimator : inverse probability weighted
Outcome model : weighted mean
Treatment model: probit

bweight	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-230.6886	25.81524	-8.94	0.000	-281.2856	-180.0917
POmean mbsmoke nonsmoker	3403.463	9.571369	355.59	0.000	3384.703	3422.222

IPW ATET

<pre>. teffects ipw (bweight) /// > (mbsmoke mmarried c.mage##c.mage fbaby medu, Iteration 0: EE criterion = 4.621e-21</pre>	probit), atet		
Iteration 1: EE criterion = 7.103e-27			
Treatment-effects estimation	Number of obs	=	4642
Estimator : inverse probability weighted			
Outcome model : weighted mean			
Treatment model: probit			

bweight	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATET mbsmoke (smoker vs nonsmoker)	-225.1773	23.66458	-9.52	0.000	-271.559	-178.7955
POmean mbsmoke nonsmoker	3362.837	14.20149	236.79	0.000	3335.003	3390.671

Doubly Robust Estimators

- Doubly robust estimators model both the treatment and the outcome model
- These models are interesting because they are consistent even if one of the models is misspecified
- Augmented Inverse Probability Weighting (AIPW) and Inverse Probability Weighted Regression Adjustment(IPWRA) have this property

Double Robust Estimators AIPW

- Estimate a treatment model and compute inverse-probability weights
- Estimate separate regression model of the outcome for each treatment level
 - We allow the outcome model to be estimated by nonlinear least squares or weighted nonlinear least squares
- Compute the weighted means of the treatment-specific predicted outcomes, where the weights are the inverse-probability weights computed in step.

ATE for AIPW

. teffects aipw (bweight prenatall mmarried mage fbaby) ///
> (mbsmoke mmarried c.mage##c.mage fbaby medu)
Iteration 0: EE criterion = 1.721e-21
Iteration 1: EE criterion = 2.247e-26
Treatment-effects estimation Number of obs = 4642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: logit

bweight	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-232.0409	25.66973	-9.04	0.000	-282.3527	-181.7292
POmean mbsmoke nonsmoker	3403.457	9.570043	355.64	0.000	3384.7	3422.214

ATE for AIPW with Nonlinear Least Squares

. teffects aipw (bweight prenatall mmarried mage fbaby, poisson) ///
> (mbsmoke mmarried c.mage##c.mage fbaby medu), nls
Iteration 0: EE criterion = .00018418
Iteration 1: EE criterion = 1.991e-17
Treatment-effects estimation Number of obs = 4642
Estimator : augmented IPW
Outcome model : Poisson by NLS
Treatment model: logit

bweight	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-232.1593	25.69692	-9.03	0.000	-282.5244	-181.7943
POmean mbsmoke nonsmoker	3403.444	9.57036	355.62	0.000	3384.687	3422.202

Displaying Treatment and Outcome Equations

. teffects aipw (bweight prenatall mmarried mage fbaby, poisson) /// > (mbsmoke mmarried c.mage#Ec.mage fbaby medu), aequations nolg Treatment-effects estimation = 4642 Estimator : augmented IPW

Outcome model : Poisson by ML Treatment model: logit

bweight	Coef.	Robust Std. Err.	z	₽> z	[95% Conf.	[Interval]
ATE mbsmoke (smoker vs						
nonsmoker)	-232.1369	25.68896	-9.04	0.000	-282.4864	-181.7875
POmean mbsmoke						
nonsmoker	3403.444	9.570363	355.62	0.000	3384.686	3422.202
OME0 prenatall mmarried mage fbaby _cons	.0191803 .0480049 .0007522 0209166 8.072261	.0082502 .0080048 .0006106 .0057619 .0159896	2.32 6.00 1.23 -3.63 504.84	0.020 0.000 0.218 0.000 0.000	.0030102 .0323158 0004447 0322097 8.040922	.0353503 .0636939 .001949 0096235 8.1036
OME1 prenatall mmarried mage fbaby _cons	.0080848 .0426096 0023601 .0131662 8.07972	.012943 .0130351 .0013552 .0126163 .0334184	0.62 3.27 -1.74 1.04 241.77	0.532 0.001 0.082 0.297 0.000	0172831 .0170612 0050163 0115613 8.014221	.0334526 .0681579 .0002961 .0378937 8.145219
TME1 mmarried mage	-1.145706 .321518	.0975846	-11.74 4.89	0.000	-1.336969 .1926773	9544439 .4503588
c.mage#c.mage	0060368	.0012234	-4.93	0.000	0084346	0036389
fbaby medu _cons	3864258 1420833 -2.950915	.0894428 .0179132 .8302955	-4.32 -7.93 -3.55	0.000 0.000 0.000	5617305 1771926 -4.578264	2111211 106974 -1.323565

▲□▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Double Robust Estimators Inverse Probability Weighted Regression Adjustment (IPWRA)

- Estimate a treatment model and compute inverse-probability weights
- Use the estimated inverse-probability weights and fit weighted regression models of the outcome for each treatment level
- Compute the means of the treatment-specific predicted outcomes

ATET for Inverse Probability Weighted Regression Adjustment

```
. teffects ipwra (bweight prenatall mmarried mage fbaby) ///
> (mbsmoke mmarried c.mage##c.mage fbaby medu), atet
Iteration 0: EE criterion = 4.620e-21
Iteration 1: EE criterion = 1.345e-26
Treatment-effects estimation Number of obs = 4642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: logit
```

bweight	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
ATET mbsmoke (smoker vs nonsmoker)	-224.0108	23.846	-9.39	0.000	-270.7481	-177.2735
POmean mbsmoke nonsmoker	3361.671	14.54939	231.05	0.000	3333.154	3390.187

Displaying Treatment and Outcome Equations

. teffects ipwra (bweight prenatall mmarried mage fbaby) ///
> (mbsmoke mmarried c.mage#Eaumage fbaby medu), atet aequations
Iteration 0: EE criterion = 4.620e-21
Iteration 1: EE criterion = 1.345e-26
Iteration 1: EE criterion = 1.345e-26
Stimator : IPW regression adjustment
Outcome model : linear
Treatment model: logit

Bobust Robust ATET mbsmoke
vs nonsmoker) -224.0108 23.846 -9.39 0.000 -270.7481 -177.2735
POmean mbsmoke nonsmoker 3361.671 14.54939 231.05 0.000 3333.154 3390.187
0MEQ
OMESO prenatall 77.07926 40.4633 1.90 0.057 -2.227341 156.3859 mmarried 138.9961 29.48776 4.71 0.000 81.20114 196.791 mage 4.482273 3.033008 1.48 0.139 -1.462313 10.42686 fbaby -73.85266 32.55461 -2.27 0.023 -137.6585 -10.0468 oos 3157.337 72.75766 43.40 0.000 3014.734 3299.939
OME1
prenatall 25.11133 40.37541 0.62 0.534 -54.02302 104.2457 mmarried 133.6617 40.86443 3.27 0.010 53.5689 213.7545 mage -7.370881 4.21817 -1.75 0.081 -15.63834 .8965804 fbaby 41.43991 39.70712 1.04 0.297 -36.38461 119.2644
TME1
mmarried mage -1.145706 .0975846 -11.74 0.000 -1.336969 9544439 .321518 .0657363 4.89 0.000 .1926773 .4503588
c.mage#c.mage0060368 .0012234 -4.93 0.00000843460036389
fbaby3864258 .0894428 -4.32 0.00056173052111211 medu1420833 .0179132 -7.93 0.0001771926106974 cons -2.950915 .8302955 -3.55 0.000 -4.578264 -1.323565

(StataCorp LP)

Nearest Neighbor Matching

- Can be understood as an outcome model within our framework
- Matches the closest individuals in terms of covariates
- Is a nonparametric estimate with an asymptotic bias.
- These estimators are nondifferentiable therefore the bootstrap is not allowed
- These estimators do not allow for multivalued treatments

Nearest Neighbor Matching

- Can be understood as an outcome model within our framework
- Matches the closest individuals in terms of covariates
- Is a nonparametric estimate with an asymptotic bias.
- These estimators are nondifferentiable therefore the bootstrap is not allowed
- These estimators do not allow for multivalued treatments

ATE with Nearest Neighbor Matching

. teffects nnmatch (bweight mage prenatal)	mmarried fbaby) (mbsmoke)	
Treatment-effects estimation	Number of obs = 4642	2
Estimator : nearest-neighbor matching	Matches: requested =	Ĺ
Outcome model : matching	min =	1
Distance metric: Mahalanobis	max = 139)
AI Robust		-

bweight	Coef.	AI Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
ATE mbsmoke (smoker						
vs nonsmoker)	-240.3306	28.43006	-8.45	0.000	-296.0525	-184.6087

Exact Matching and Different Distance

	<pre>mmatch (bweight mage) (mbsmoke), / itall mmarried fbaby) metric(eucli</pre>			
	ects estimation	Number of obs	=	4642
	: nearest-neighbor matching	Matches: requested	=	1
Outcome model		min	=	1
Distance metri	.c: Euclidean	max	=	139
	AI Robust			

bweight	Coef.	AI Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-240.3306	28.43006	-8.45	0.000	-296.0525	-184.6087

Bias Adjustment

. teffects nnmatch (bweight mage fage) (mbsmol		
> ematch(prenatal1 mmarried fbaby) biasadj(mage	e fage)	
Treatment-effects estimation	Number of obs =	4642
Estimator : nearest-neighbor matching	Matches: requested =	1
Outcome model : matching	min =	1
Distance metric: Mahalanobis	max =	25

bweight	Coef.	AI Robust Std. Err.	z	₽> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-223.8389	26.19973	-8.54	0.000	-275.1894	-172.4883

Propensity Score Matching

- Can be classified within the class of treatment models
- Estimate the treatment probabilities (propensity scores)
- Assign values to unobserved outcomes based on observed ones with similar propensity scores
- Estimate ATE
- These estimators are nondifferentiable therefore the bootstrap is not allowed
- These estimators do not allow for multivalued treatments

(B)

Propensity Score Matching

- Can be classified within the class of treatment models
- Estimate the treatment probabilities (propensity scores)
- Assign values to unobserved outcomes based on observed ones with similar propensity scores
- Estimate ATE
- These estimators are nondifferentiable therefore the bootstrap is not allowed
- These estimators do not allow for multivalued treatments

(B)

Propensity Score Matching controlling matches

. teffects psmatch (bweight) (mbsmoke mmarried	<pre>c.mage##c.mage fbaby medu), ///</pre>
> nneighbor(2)	
Treatment-effects estimation	Number of obs = 4642
Estimator : propensity-score matching	Matches: requested = 2
Outcome model : matching	min = 2
Treatment model: logit	max = 74

bweight	Coef.	AI Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-214.2469	27.47783	-7.80	0.000	-268.1025	-160.3914

Conclusion

- We have presented a host of treatment effects estimators within a unified framework
- The estimators are parametric and nonparametric and in the parametric cases can be consistent under misspecification of the potential outcome or treatment models
- The estimators provide estimates and inference for quantities of interest for researchers, POM, ATE, ATET.

Double Robustness I

- Let P (τ|x, z, γ̂) =: M_P (γ̂) be our estimated conditional treatment probabilities
- Let E(y|x, z, τ, β̂) =: M_E(β̂_τ) define our estimated conditional means

We define the following estimators for the POMs

$$\hat{E}(y_{1}) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\tau_{i} y_{i}}{M_{P}(\hat{\gamma})} - \frac{\{\tau_{i} - M_{P}(\hat{\gamma})\}}{M_{P}(\hat{\gamma})} M_{E}(\hat{\beta}_{1}) \right]$$
$$\hat{E}(y_{0}) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{(1 - \tau_{i}) y_{i}}{1 - M_{P}(\hat{\gamma})} - \frac{\{\tau_{i} - M_{P}(\hat{\gamma})\}}{1 - M_{P}(\hat{\gamma})} M_{E}(\hat{\beta}_{0}) \right]$$

Double Robustness I

- Let P (τ|x, z, γ̂) =: M_P (γ̂) be our estimated conditional treatment probabilities
- Let E(y|x, z, τ, β̂) =: M_E(β̂_τ) define our estimated conditional means
- We define the following estimators for the POMs

$$\hat{E}(y_{1}) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{\tau_{i} y_{i}}{M_{P}(\hat{\gamma})} - \frac{\{\tau_{i} - M_{P}(\hat{\gamma})\}}{M_{P}(\hat{\gamma})} M_{E}(\hat{\beta}_{1}) \right]$$
$$\hat{E}(y_{0}) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{(1 - \tau_{i}) y_{i}}{1 - M_{P}(\hat{\gamma})} - \frac{\{\tau_{i} - M_{P}(\hat{\gamma})\}}{1 - M_{P}(\hat{\gamma})} M_{E}(\hat{\beta}_{0}) \right]$$

Intuition Behind Double Robustness II

- We will focus on $\hat{E}(y_1)$ (a similar argument follows for $\hat{E}(y_0)$)
- By the law of large numbers it follows that $\hat{E}(y_1)$ has the following probability limit:

$$\hat{E}(y_{1}) \stackrel{p}{\rightarrow} E\left[\frac{\tau y}{M_{P}(\gamma)} - \frac{\{\tau - M_{P}(\gamma)\}}{M_{P}(\gamma)}M_{E}(\beta_{1})\right]$$

$$= E \left[\frac{\tau y_{1}}{M_{P}(\gamma)} - \frac{\{\tau - M_{P}(\gamma)\}}{M_{P}(\gamma)} M_{E}(\beta_{1}) + y_{1} - y_{1} \right]$$

$$= E \left[\frac{\tau y_{1}}{M_{P}(\gamma)} - \frac{\{\tau - M_{P}(\gamma)\}}{M_{P}(\gamma)} M_{E}(\beta_{1}) + y_{1} - y_{1} \frac{M_{P}(\gamma)}{M_{P}(\gamma)} \right]$$

$$= E \left[\frac{y_{1}(\tau - M_{P}(\gamma))}{M_{P}(\gamma)} - \frac{\{\tau - M_{P}(\gamma)\}}{M_{P}(\gamma)} M_{E}(\beta_{1}) + y_{1} \right]$$

$$= E \left[\frac{\{\tau - M_{P}(\gamma)\}}{M_{P}(\gamma)} (y_{1} - M_{E}(\beta_{1})) + y_{1} \right]$$

$$= E (y_{1}) + E \left[\frac{\{\tau - M_{P}(\gamma)\}}{M_{P}(\gamma)} (y_{1} - M_{E}(\beta_{1})) \right]$$

(日本) (日本) (日本) (日本)

Intuition Behind Double Robustness II

- We will focus on $\hat{E}(y_1)$ (a similar argument follows for $\hat{E}(y_0)$)
- By the law of large numbers it follows that $\hat{E}(y_1)$ has the following probability limit:

$$\hat{E}(y_1) \stackrel{p}{\to} E\left[\frac{\tau y}{M_P(\gamma)} - \frac{\{\tau - M_P(\gamma)\}}{M_P(\gamma)}M_E(\beta_1)\right]$$

$$= E\left[\frac{\tau y_1}{M_P(\gamma)} - \frac{\{\tau - M_P(\gamma)\}}{M_P(\gamma)}M_E(\beta_1) + y_1 - y_1\right]$$

$$= E\left[\frac{\tau y_1}{M_P(\gamma)} - \frac{\{\tau - M_P(\gamma)\}}{M_P(\gamma)}M_E(\beta_1) + y_1 - y_1\frac{M_P(\gamma)}{M_P(\gamma)}\right]$$

$$= E\left[\frac{y_1(\tau - M_P(\gamma))}{M_P(\gamma)} - \frac{\{\tau - M_P(\gamma)\}}{M_P(\gamma)}M_E(\beta_1) + y_1\right]$$

$$= E\left[\frac{\{\tau - M_P(\gamma)\}}{M_P(\gamma)}(y_1 - M_E(\beta_1)) + y_1\right]$$

$$= E(y_1) + E\left[\frac{\{\tau - M_P(\gamma)\}}{M_P(\gamma)}(y_1 - M_E(\beta_1))\right]$$

Intuition Behind Double Robustness III

$$\hat{E}(y_1) \xrightarrow{p} E(y_1) + E\left[\frac{\{\tau - M_P(\gamma)\}}{M_P(\gamma)}(y_1 - M_E(\beta_1))\right]$$

- Given conditional independence of treatment and outcome conditional on the regressors by the law of iterated expectations:
 - ▶ If the outcome model is correctly specified $E[y_1 M_E(\beta_1)] = 0$. This implies that even if the treatment model is incorrectly specified, $\hat{E}(y_1) \xrightarrow{p} E(y_1)$
 - Similarly if the treatment model is correctly specified $E[\tau M_P(\gamma)] = 0$. Thus, even if $E[y_1 M_E(\beta_1)] \neq 0$ we have that $\hat{E}(y_1) \stackrel{p}{\rightarrow} E(y_1)$

Intuition Behind Double Robustness III

$$\hat{E}(y_1) \xrightarrow{p} E(y_1) + E\left[\frac{\{\tau - M_P(\gamma)\}}{M_P(\gamma)}(y_1 - M_E(\beta_1))\right]$$

- Given conditional independence of treatment and outcome conditional on the regressors by the law of iterated expectations:
 - ▶ If the outcome model is correctly specified $E[y_1 M_E(\beta_1)] = 0$. This implies that even if the treatment model is incorrectly specified, $\hat{E}(y_1) \xrightarrow{p} E(y_1)$
 - Similarly if the treatment model is correctly specified $E[\tau M_P(\gamma)] = 0$. Thus, even if $E[y_1 M_E(\beta_1)] \neq 0$ we have that $\hat{E}(y_1) \xrightarrow{p} E(y_1)$

We define the projection model by:

$$y = X\beta + \varepsilon$$

 $E(X'\varepsilon) = 0$

 β is then given by:

$$0 = E(X'\varepsilon)$$

$$0 = E(X' \{y - X\beta\})$$

$$\beta = E(X'X)^{-1}E(X'y)$$

$$\hat{\beta} = \left(\frac{X'X}{n}\right)^{-1} \left(\frac{X'y}{n}\right)$$

We define the projection model by:

$$y = X\beta + \varepsilon$$
$$E(X'\varepsilon) = 0$$

 β is then given by:

$$0 = E(X'\varepsilon)$$

$$0 = E(X'\{y - X\beta\})$$

$$\beta = E(X'X)^{-1}E(X'y)$$

$$\hat{\beta} = \left(\frac{X'X}{n}\right)^{-1} \left(\frac{X'y}{n}\right)$$

We define the projection model by:

$$y = X\beta + \varepsilon$$
$$E(X'\varepsilon) = 0$$

 β is then given by:

$$0 = E(X'\varepsilon)$$

$$0 = E(X'\{y - X\beta\})$$

$$\beta = E(X'X)^{-1}E(X'y)$$

$$\hat{\beta} = \left(\frac{X'X}{n}\right)^{-1} \left(\frac{X'y}{n}\right)$$

We define the projection model by:

$$y = X\beta + \varepsilon$$

 $E(X'\varepsilon) = 0$

 β is then given by:

$$0 = E(X'\varepsilon)$$

$$0 = E(X'\{y - X\beta\})$$

$$\beta = E(X'X)^{-1}E(X'y)$$

$$\hat{\beta} = \left(\frac{X'X}{n}\right)^{-1} \left(\frac{X'y}{n}\right)$$

We define the projection model by:

$$y = X\beta + \varepsilon$$
$$E(X'\varepsilon) = 0$$

 β is then given by:

$$0 = E(X'\varepsilon)$$

$$0 = E(X'\{y - X\beta\})$$

$$\beta = E(X'X)^{-1}E(X'y)$$

$$\hat{\beta} = \left(\frac{X'X}{n}\right)^{-1} \left(\frac{X'y}{n}\right)$$

Estimation II: Methodology We Employ

- The different specifications for the outcome generate moment conditions
- We can then use GMM to estimate the parameters of interest
- For the linear model:

$$0 = E\left[\tau(y - x\beta_1)'x + (1 - \tau)(y - x\beta_0)'x\right]$$

• For the probit and logit models

$$0 = E\left(\tau\left[\frac{g(x\beta_1)\{y - G(x\beta_1)\}}{G(x\beta_1)\{1 - G(x\beta_1)\}}\right] + (1 - \tau)\left[\frac{g(x\beta_1)\{y - G(x\beta_0)\}}{G(x\beta_0)\{1 - G(x\beta_0)\}}\right]\right)$$

G(.) is either the standard normal CDF or the logistic function
 g(.) is the derivative of G(.)

《曰》《圖》《曰》《曰》 되는

Estimation II: Methodology We Employ

- The different specifications for the outcome generate moment conditions
- We can then use GMM to estimate the parameters of interest
- For the linear model:

$$0 = E\left[\tau(y - x\beta_1)'x + (1 - \tau)(y - x\beta_0)'x\right]$$

• For the probit and logit models

$$0 = E\left(\tau\left[\frac{g(x\beta_1)\{y - G(x\beta_1)\}}{G(x\beta_1)\{1 - G(x\beta_1)\}}\right] + (1 - \tau)\left[\frac{g(x\beta_1)\{y - G(x\beta_0)\}}{G(x\beta_0)\{1 - G(x\beta_0)\}}\right]\right)$$

- ► G(.) is either the standard normal CDF or the logistic function
- ▶ g(.) is the derivative of G(.)

Distance

The distance function is given by:

$$||x_i - x_j||_{S} = \{(x_i - x_j)' S^{-1} (x_i - x_j)\}^{1/2}$$

where S can be:

$$S = \begin{cases} \frac{(X - x1_n)'W(X - x1_n)}{\sum_{i=1}^{n} w_i - 1} & \text{if m} \\ \text{diagonal} \left\{ \frac{(X - x1_n)'W(X - x1_n)}{\sum_{i=1}^{n} w_i - 1} \right\} & \text{if m} \\ I_k & \text{if m} \end{cases}$$

if metric is mahalanobis

- metric is ivariance
- f metric is euclidean

Above 1_n is an *n* vector of ones, *W* is a matrix of frequency weights

315

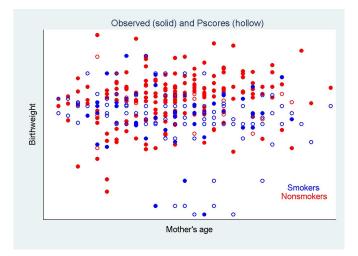
3 > 4 3

ATE for Propensity Score Matching

. teffects psmatch (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu), ///
> generate(ps)
Treatment-effects estimation Number of obs = 4642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 74

bweight	Coef.	AI Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
ATE mbsmoke (smoker vs nonsmoker)	-210.9683	32.021	-6.59	0.000	-273.7284	-148.2083

Matches Generated by the Estimator



A Nonsequitur

- Imbens and Wooldridge (2009) JEL for a recent survey
- Regression Discontinuity. Lee and Lemiux (2010) JEL
- Nonparametric Multivariate Treatment Effects. See Cattaneo 2010 in the New Palgrave Dictionary and Cattaneo 2010 JOE.
- Stata also offers estimation in the presence of endogeneity