Multilevel linear models in Stata: a simulation approach

Isabel Cañette Senior Statistician StataCorp LP

2012 Spanish Stata Users Group meeting Barcelona, September 12, 2012

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶ _ ≧

Simulating data for our models

Simulating data is a powerful tool to understand the model we want to fit, and also to spot identification issues.

Let's start by fitting a linear model on the homework dataset¹

use homework regress math homework

The same coefficients can be obtained by using xtmixed

	,		_			
math	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
homework _cons	3.126375 45.56015	.2860801 .7055719	10.93 64.57	0.000	2.565668 44.17726	3.687081 46.94305

	xtmixed	math	homework,	nolog	noheader	
•	xtmixed	math	homework,	nolog	noheader	

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
sd(Residual)	9.661575	.2998812	9.09134	10.26758

¹Kreft, I.G.G and de J. Leeuw. 1998. Introducing Multilevel Modeling. Sage. Rabe-Hesketh, S. and A. Skrondal. 2008. Multilevel and Longitudinal Modeling ・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ - 3 Using Stata, Second Edition. Stata Press

Simulating data for this model is very simple

- . gen x = 8*runiform()
- . gen y1 = 3.13*x + 45.56 + 9.66*rnormal()

(Notice that I should use the saved results instead of copying them from the screen; I'm just doing this for didactic purposes)

э

(日) (同) (日) (日)

Random-effect models

Random intercept only: we are assuming that the intercept varies randomly across schools

The syntax to fit this model would be:

xtmixed math homework || schid:

э

(日) (四) (日) (日)

Random intercept and random slope: we are assuming that both, intercept and slope, vary randomly across schools)

xtmixed math homework || schid: homework

э

(日) (同) (日) (日)

. xtmixed math homework || schid: homework, nolog noheader nolrtest

Interval]	[95% Conf.	P> z	z	td. Err.	Coef. S	math
3.604158	.3448746	0.018	2.37	8314652	1.974516 .	homework
49.61792	43.3109	0.000	28.88	.608962	46.46441 1	_cons
					L	
Interval]	[95% Conf.	d. Err.	ate Sto	Estima	cts Parameters	Random-effec
					ndent	schid: Indeper
5.326314	2.58316	347578	.68	3.709	sd(homework)	_
10.06082	5.042925	255007	292 1.2	7.12	sd(_cons)	
7.834457	6.88539	419451	l61 .24	7.34	sd(Residual)	

. est store original1

Simulating data for one-level random-effects models

	math	coef				
	homework	1.974516				
	_cons	46.46441				
1 1057	schid	Estimate				
set seed 1357	sd(homework)	3.709275				
set sortseed 159	sd(cons)	7.12292				
set obs 100 // 100 schools	sd(Residual)	7.34461				
<pre>generate schid = _n // school identifier</pre>						
<pre>generate homework = 8*runiform() // indep. var;</pre>	iable					
<pre>generate residual = 7.34*rnormal() // residuals</pre>	3					
generate math = 1.97*homework + 46.46 + nu0 + nu1*homework + residual						
xtmixed math homework schid: homework, nolog noheader nolrtest						
est store simulated1						

(日) (部) (注) (注) (注) (注)

. estimates table original1 simulated1

Variable	original1	simulated1
math		
homework	1.9745165	1.8530287
_cons	46.464411	46.569009
lns1_1_1 _cons	1.3108365	1.3818598
		·····
	1.9633177	1.8942815
lnsig_e		
_cons	1.9939667	1.9986072

We have assumed that the slope and the intercept are independent. We could have assumed that there was a correlation among them.

. xtmixed math homew || schid: homew, cov(unstructured) var nolo nolr nohead

math	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
homework _cons	1.980164 46.32561	.9284486 1.758934	2.13 26.34	0.033	.160438 42.87816	3.799889 49.77305

Random-effects Parameters	Estimate	Std. Err.	[95% Conf.	Interval]
schid: Unstructured				
var(homework)	17.72652	6.260285	8.871839	35.41875
var(_cons)	62.42455	21.38154	31.90093	122.1539
<pre>cov(homework,_cons)</pre>	-27.59391	10.56626	-48.3034	-6.884412
var(Residual)	53.29462	3.465962	46.91658	60.53972

. est store original2

(日) (部) (注) (注) (三)

Simulating data for one-level models with correlated random effects

	math	coef				
	homework	1.980164				
	_cons	46.32561				
	schid	Estimate				
-]	var(homework)	17.72652				
clear	var(cons)	62.42455				
set seed 1357	cov(homework, cons)	-27.59391				
set sortseed 159	var(Residual)	53.29462				
<pre>generate schid = _n // school identifier matrix a = (17.73, -27.59 \ -27.59, 62.42) drawnorm nu1 nu0, cov(a) // random slope and intercept expand 200 // 200 students per school</pre>						
generate homework = 8*runiform() // inde	ep. variable					
generate residual = sqrt(53.29)*rnormal	() // residuals					
generate math = 1.98*homework + 46.33 + nu0 + nu1*homework + residual						
xtmixed math homework schid: homework, ///						
cov(unstructured) var nolog nol	neader nolrtest					
est store original2						

. xtmixed math homework || schid: homework, cov(unstructured) var (output omitted) . est store simulated2

Variable	original2	simulated2
math		
homework _cons	1.9801637 46.325606	2.1013484 45.970628
lns1_1_1 _cons	1.4375308	1.4200276
lns1_1_2 _cons	2.0669793	2.0222833
atr1_1_1_2 _cons	-1.1865765	-1.1093948
lnsig_e _cons	1.9879177	1.9931474

. est table original2 simulated2

Often, researchers tend to model the "natural" nesting structure. For example, schools are naturally nested within regions, because a school can't be in two regions. xtmixed assumes, by default, that consecutive levels are nested.

. xtmixed math homework || region: ||schid:

This specification assumes that I have a random intercept for each region, and also one random intercept for each school.

xtmixed assumed that schools on different regions are different, no matter if we repeat the identificators across regions. If we code:

xtmixed will interpret that (the effect of) school 1 from region 1 and (the effect of) school 1 from region 2 are different.

Simulating data for nested random-effects models

```
set seed 1357
set sortseed 713
scalar sd_int_region = 5
scalar sd int school = 7
scalar sd res = 1
qui set obs 20 // number of region
gen region = _n // region identifier
gen int_region = sd_int_region*rnormal()
expand 100 // number of schools per region
sort region
gen schoolid = n // school identifier
gen int_school = sd_int_school*rnormal()
qui expand 100 // number of students per school
gen res = rnormal() // residuals
gen homework = 8*runiform() // indep. variable
gen y = 2*homework +46 + int_region + int_school + res
```


. xtmixed y homework || region: ||school:, nolog nolr nohead

У	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
homework	2.000976	.0009745	2053.38	0.000	1.999067	2.002886
_cons	46.19403	.8541039	54.08	0.000	44.52002	47.86805
	L					
Random-effe	cts Parameters	Esti	mate St	d. Err.	[95% Conf.	Interval]
region: Ident:	ity					
	sd(_cons)	3.75	3788 .6	304813	2.700866	5.217188
schoolid: Ide	ntity					
	sd(_cons)	7.06	0727 .1	122247	6.844161	7.284145
	sd(Residual)	. 99	8948 .0	015874	.9958415	1.002064

Crossed effects

Sometimes we don't want to consider nested-effect models, but crossed-effect models, i.e., models where levels that are not nested. For example, in the pig dataset, we have the dependent variable weight and information on the week and the id. We may think that each individual pig has some random departure from the line:

xtmixed weight week ||id:

or instead, that each week determines some departure from this line:

xtmixed weigh week || week:

What if we want both? We don't want to consider these effects as "nested" How do we simulate data for this model?

Simulating data for crossed-effects models

```
set seed 1357
set sortseed 793
scalar sd_re_week = 1
scalar sd_re_id = 3.5
scalar sd_res = 2
set obs 50 //number of pigs
gen id = _n // pig identifier
gen re_id = sd_re_id*rnormal() // random intercept, pig level
expand 20 // number of weeks
bysort id: gen week = _n // week identifier; these repeat across pigs
gen re_week = sd_re_week*rnormal() // random effect, week
bysort week: replace re_week = re_week[1] // needs to be unique per week
gen res = sd_res*rnormal()
gen weight = 6*week + 19 + re_id + re_week + res
```


We can estimate the model with the following syntax:

. xtmixed weigh week || _all:R.week || id:, nolog nolr nohead

weight	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
week	6.003322	.0415515	144.48	0.000	5.921882	6.084761
	10.11211					20.10121
Random-effec	ts Parameters	Estir	nate St	d. Err.	[95% Conf.	Interval]
_all: Identity	sd(R.week)) 1.033	3334 .1	851922	.7272604	1.468221
id: Identity	sd(_cons)) 3.358	3588 .3	453138	2.745619	4.108404

2.004485

.0464529

1.915476

・ロト ・ 理ト ・ モト ・ モト

Stata tip: always use the R. notation for the level with less categories.

sd(Residual)

э

2.097631

What does exactly, the _all:R.var notation do?

It creates a level "_all" containing all the observations in one category; At this level, a set of covariates is included, consisting of dummies for the categories of var, while constraining the variances to be the same.

That is:

xtmixed weight week || _all:R.week

Is the same as

```
generate one = 1
tab id, gen(week_dummy)
xtmixed weight week || one: week_dummy*, cov(identity) nocons
```

Which is just an inefficient way to fit the model:

xtmixed weight week || week:

Naturally-nested vs model-nested models

Let's assume that we have data on return on assets for a set of firms, which belong to different industries and different countries. Industries and countries are naturally crossed. We can model them as they are:

. xtmixed asset || _all: R.country ||industry:

We might think, instead, that each industry behaves differently for each country, i.e., we can create a "virtual" level, country-industry.

```
. use asset2, clear
. xtmixed asset || country: || industry:
```


This area is becoming increasingly popular among social scientists, and consists of statistical techniques to study data comprised by pairs of correlated individuals.

Some examples are member of a couple, parent and child, individuals matched in an experimental design, etc.

The main tools used for these problems are multilevel models and structural equation models (implemented in the sem command).

Kenny et al.² used an hypothetical dyadic study predicting likelihood of marriage.

The variables of interest were

- the dependent variable: likelihood of marriage within 5 years, as perceived by each member of the couple.
- the main predictor: a composite score measuring the contribution made by each member to the household
- two more covariates:
 - gender (women = -1, men = 1)
 - culture (Asian = -1, American = 1).

Notice the particular coding used for binary variables. It is done to interpret the coefficients as differences from the grand mean.

²Kenny, D., D. Kashi and W. Cook. 2006. Dyadic Data Analysis. The Guilford Press

The dataset looks like this:

	+					+
	dyad	person	future	contribution	gender	culture
1.	1	1	75	-10	-1	 1 ا
2.	1	2	90	-5	1	1
з.	2	1	55	0	-1	1
4.	2	2	75	10	1	1
5.	3	1	45	-10	-1	1
6.	3	2	33	-15	1	1
7.	4	1	70	5	-1	1
8.	4	2	75	15	1	1
9.	5	1	50	0	-1	1
10.	5	2	40	-5	1	1
(.)					

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧▶ ≧

The authors fit the following model:

gen contrib_cult = contribution*culture

. xtmixed future contribution culture contrib_cult || dyad: , ///

> reml var nolog noheader

future	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
contribution	.8447885	.255653	3.30	0.001	.3437178	1.345859
culture	-9.032817	4.469649	-2.02	0.043	-17.79317	272466
contrib_cult	.4872612	.255653	1.91	0.057	0138095	.988332
_cons	71.83089	4.469649	16.07	0.000	63.07054	80.59124

Random-effect	ts Parameters	Estimate	Std. Err.	[95% Conf. Interval]		
dyad: Identity	var(_cons)	176.4304	102.5106	56.49412	550.9898	
	var(Residual)	43.75333	21.43787	16.74738	114.3077	

LR test vs. linear regression: chibar2(01) = 8.44 Prob >= chibar2 = 0.0018

The postestimation command estat icc computes the intraclass correlation, which in this case is the proportion of the total variance due to variation between couples.

. estat icc

Residual intraclass correlation

Level	ICC	Std. Err.	[95% Conf.	Interval]
dyad	.8012872	.1274283	.4565605	.9508703

Categorical variables in this dataset are manually coded to obtain the difference from the grand mean. This kind of coding can be tricky when there are more than two categories, or with unbalanced data.

In Stata you don't need to do that; you can use the factor variable notation, and there is a battery of post estimation commands that will compute all the effects that you need (see contrast, margins, marginsplot).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Here is how to fit the previous model using the factor variable notation.

. gen cult2 = cult = . xtmixed future i.	== 1 .cult2##c.cont	rib dya	d: , reml	var nolog	; noheader nol	r
future	e Coef.	Std. Err	. z	P> z	[95% Conf.	In
1.cult2 contribution	2 -18.06563 1 .3575272 	8.939298 .2322398	-2.02 1.54	0.043 0.124	-35.58634 0976544	
cult2#c.contribution 1	n .9745225 	.5113061	1.91	0.057	027619	1
_cons	s 80.86371	6.307358	12.82	0.000	68.50151	
Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]						
dyad: Identity va	 ar(_cons) +	176.4304	102.5106	56.49	9412 550.98	98
var(F	Residual)	43.75333	21.43787	16.74	738 114.30	77

The differences from the grand mean can be computed and tested with contrast.

```
. contrast g.cult2 g.cult2#c.contrib
```

Contrasts of marginal linear predictions

Margins : asbalanced

Final remarks

- xtmixed is a versatile command that allows us to fit a variety of models.
- Understanding the mechanics of each piece in the syntax allows us to fit very sophisticated models.
- Simulating data allows us to get a deeper insight on multilevel models, to understand the particular specification we want to use, and eventually spot identification problems.
- xtmixed also allows us to specify different structures for the errors, feature not covered in this talk. This feature opens a new array of models, including more sophisticated models with multivariate response.
- The sem command can also be used to fit multilevel models. The choice of the command will depend on convenience (data setting) and on the particular model.

