GMM estimation in Mata

Using Stata's new optimizer to program estimators

Austin Nichols

July 24, 2008

Austin Nichols



optimize() is exciting stuff

» The new (as of Stata 10) optimize function in Mata is exciting.

> You can use it e.g. to find maxima of a function, solve a difficult
nonlinear system of equations, or write a new estimator.

> Likely suspects: Generalized Methods of Moments (GMM) or Minimum
Distance estimators (MDE).

> More on GMM: Hansen (1982)
> More on MDE: Chamberlain (1982, 1984)
> More on both: Wooldridge (2002) chapter 14

> Today: a couple of quick examples of GMM estimators; see ivpois on
SSC for a more detailed example.

Austin Nichols



GMM
Efficient GMM
Simple example

The OLS model

Consider the most common regression framework:
y=XB+e
where we assume E(X’e) = 0 so our estimator j is unbiased.

The usual approach is to define
Bows = (X'X)"H(X'y)
that minimizes the sum of squared residuals
Y =9 =3y —XB)y

and has an easy solution.

Austin Nichols



Linear regression

Efficient GMM
Simple example

The GMM model

Could also define BGMM that gets E(X’Z) as close to zero as possible in the
sample (zero, in fact, with a constant) by minimizing the quadratic form

(X'e)A(X'e)

for some weighting matrix A, where e is a function of the coefficient
e=y— Xb.

This is the basic idea of GMM: if you know a population moment g(3) is zero,
try to get the analogous sample moment as close to zero as possible by
minimizing its “square.” Hansen (1982, 1984) discusses the asymptotic
properties of this approach, and Hayashi (2000), Wooldridge (2002, ch.14), and
Baum, Schaffer, and Stillman (2003, 2007) discuss the intuition and practical
implementation.

Austin Nichols



Linear regression
GMM

Simple example

The GMM family of models

In fact, each criterion function of the form
g(b) - A-g(b)

defines a family of estimators, one for each weighting matrix A (including an
identity matrix as one possibility). If A is chosen to be the inverse of the
variance of g(b) we get an efficient estimator. If A is chosen to be a consistent
estimator of the inverse of the asymptotic variance of g(b) we get an
asymptotically efficient estimator—there are a few ways to do this (see Baum,
Schaffer, and Stillman 2007 for a clear exposition).

Austin Nichols



Linear regression

GMM

Efficient GMM

The optimize() routine in Mata is surprisingly easy to use and all the
documentation is on the web at http://stata.com/help.cgi?mata. That said, it
can a bit confusing to set up a problem the first time.

First you need to set up a function with the criterion function (the function to
be minimized):

mata:
void i_crit(todo,b,crit,g,H)
{
external y,X,W
m=X’ (y-X*b’)
crit=(m*W+*m’)

}

where the external declaration allows the y,X,W to be passed back and forth
among Mata functions. m is the moment function g(b) and crit is the
criterion function. g and H are the gradient and Hessian, which we aren't
calculating here.

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can set up the problem in Mata and do the optimization in a handful
of lines:

y = st_data(., "earnings")

> gets the dep var “earnings”

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can set up the problem in Mata and do the optimization in a handful
of lines:

cons=J(rows(y),1,1)

> makes a constant term

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can set up the problem in Mata and do the optimization in a handful
of lines:

X = st_data(., "education"), cons

> gets the RHS var “education”

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can set up the problem in Mata and do the optimization in a handful
of lines:

W=cholinv(X’X)

> computes the weighting matrix

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can set up the problem in Mata and do the optimization in a handful
of lines:

init=J(1,cols(X),0)

> makes a starting guess at a parameter vector (all zeros)

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can set up the problem in Mata and do the optimization in a handful
of lines:

S=optimize_init ()

> creates a "name” for the optimization problem

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can set up the problem in Mata and do the optimization in a handful
of lines:

optimize_init_evaluator(S, &i_crit())

> names the function to optimize

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can set up the problem in Mata and do the optimization in a handful
of lines:

optimize_init _which(S,"min"

> tells optimize to minimize, not maximize

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can set up the problem in Mata and do the optimization in a handful
of lines:

optimize_init_evaluatortype(S,"do")

> d0 says we won't calculate gradient or Hessian

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can set up the problem in Mata and do the optimization in a handful
of lines:

optimize_init_params(S,init)

> puts in the starting guess at a parameter vector

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can set up the problem in Mata and do the optimization in a handful
of lines:

p=optimize(S)

> does the optimization and puts the parameter vector in p

Austin Nichols



Linear regression

GMM

Efficient GMM

That line optimize_init_evaluator tells the optimizer what Mata function is
going to calculate the value of the criterion function, which is called the
evaluator function in Mata. The criterion function can be scalar-valued for
d-type evaluator functions, or vector-valued for v-type evaluator functions, and
the d or v is modified with a number indicated how many derivatives it can
calculate:

type Capabilities expected of evaluator()

can calculate f(p)
can calculate f(p) and g=£f’ (p)
can calculate f(p) and g=f’(p) and H=f’’(p)

N = O

A side note: instead of declaring the data matrices as externals, you can use a
function to add an argument to the evaluator function:

optimize_init_argument(S, 1, X)

which lowers your chance of making a mistake by using the same name for
different objects.

Austin Nichols



Linear regression

GMM

Efficient GMM

A better way is to set up a Mata function that takes Stata variables as
arguments, does the optimization, and stores the result in a Stata matrix:

void i_ols(string scalar lhs, string scalar rhs, string scalar ok)
{

external y,X,W

y = st_data(., tokens(lhs), ok)

cons = J(rows(y),1,1)

X = st_data(., tokens(rhs), ok), cons
W = cholinv(X’X)

init = st_matrix("b")

S = optimize_init()
optimize_init_evaluator(S, &i_crit())
optimize_init_which(S,"min")
optimize_init_evaluatortype(S,"d0")
optimize_init_params(S,init)

p = optimize(S)
st_replacematrix("b",p)

}

Austin Nichols



Linear regression

GMM

Efficient GMM

Then you can put both Mata functions at the end of a little ado file ols.ado:

prog ols, eclass

version 10

syntax varlist [if] [in]

marksample touse

gettoken lhs rhs : varlist

mat b = J(1, :word count ‘rhs’ _cons’,0)
matname b ‘rhs’ _cons, c(.)

mata: i_ols("‘lhs’", "‘rhs’", "‘touse’")
eret post b, e(‘touse’) depname(‘lhs’)
eret di
end
mata:

void i_crit(todo,b,crit,g,H)

external y,X,W
m=X’ (y-X*b’)
crit=(m’*Wxm)

void i_ols(string scalar lhs, string scalar rhs, string scalar ok)

external y,X,W

y = st_data(., tokens(lhs), ok)

cons = J(rows(y),1,1)

X = st_data(., tokens(rhs), ok), cons
W = cholinv(X’X)

init = st_matrix("b")

S = optimize_init()
optimize_init_evaluator(S, &i_crit())
optimize_init_which(S,"min"
optimize_init_evaluatortype(S,"d0")
optimize_init_params(S,init)

p = optimize(S)
st_replacematrix("b",p)

end

Austin Nichols



Linear regression

GMM

Efficient GMM

Now you can run a GMM version of OLS, and bootstrap for standard errors:

use http://fmwww.bc.edu/ec-p/data/wooldridge/card, clear
bs: ols lwage educ
bs: reg lwage educ

Programming asymptotic standard error calculations for GMM is just a bit
more work, but offers the advantage that once you calculate the gradient, you
can improve the speed of optimization by choosing method d1 (see

help mf_optimize).

Note how easily you can shift to an instrumental variables (IV) model by
assuming E(Z’c) = 0 instead of E(X'e) = 0.

Austin Nichols



Poisson regression

A Poisson regression assumes that the outcome is described by a conditional
mean which is an exponentiated linear combination of X i.e.

E(y|X) = exp(X3)

so it is appropriate for a wide variety of models where the dependent variable is
nonnegative (zero or positive), not just where the dependent variable measures
counts of events. Wherever you might be inclined to take the logarithm of a
nonnegative dependent variable y and use OLS, Poisson regression offers an
alternative that includes observations where y is zero. Just as with a regression
of log dependent variable on X, the interpretation of estimates is as marginal
effects in percentage terms, e.g. a coefficient of 0.05 indicates a one-unit
increase in X is associated with a 5% increase in y.

Austin Nichols



GMM 1V Poisson

Mullahy (1997) proposed a GMM estimator suitable for endogenous X. If we
assume

y = exp(XpB)e
then y - exp(—X3) — 1 should be orthogonal to a set of instruments Z:
E[Z'(y - exp(~XB) — 1)] = 0

For this case, wherever you might be inclined to take the logarithm of a
nonnegative dependent variable y and use IV, the GMM estimator offers an
alternative that includes observations where y is zero.

Austin Nichols



Multiply or add

Given E[y|X] = exp(X (), one can assume either an additive error or a
multiplicative error, which produce different versions of the moment conditions.
The additive form for the error posits that y = exp(X ) + u and gives moment
conditions of the form Z'(y — exp(X3)) = 0, whereas the multiplicative form
posits y = exp(X3)u and gives moment conditions of the form

E[Z'(y - exp(—XB3) — 1))] = O for instruments Z (where Z includes all
exogenous variables, both included and excluded instruments).

Angrist (2001) shows that in a model with endogenous binary treatment and a
binary instrument, the latter procedure (assuming a multiplicative error)
estimates a proportional local average treatment effect (LATE) parameter in
models with no covariates. The latter is also more intuitively appealing and
congruent with Poisson and GLM, and the assumption can be rewritten

y = exp(XB)u = exp(XB)exp(v) = exp(XB + v) so In(y) = X3+ v (assuming
y > 0) to provide the natural link to OLS. Windmeijer (2006) contains a useful
discussion and further related models.

Austin Nichols



Moment conditions

Recall that if we assume
y = exp(XP)
then y - exp(—X3) — 1 should be orthogonal to a set of instruments Z:

E[Z'(y - exp(—XfB) —1)] = 0
This translates very easily into the Mata code:

mata:
void i_civp(todo,b,crit,g,H)
{
external y,X,Z,W
m=2’ ((y:*exp(-X*b’) :- 1))
crit=(m’*W+*m)

}

There are two changes: the m= something different, and we add Z to the
external declaration.

Austin Nichols



optimize() code

The program that calls optimize () merely adds Z:

void i_ivp(string scalar lhs, string scalar rhs, string scalar z, strin

{

external y,X,Z,W

y = st_data(., tokens(lhs), ok)

cons = J(rows(y),1,1)

X = st_data(., tokens(rhs), ok), cons
Z = st_data(., tokens(z), ok), cons
) cholinv(Z’Z)

init = st_matrix("b")

S = optimize_init()
optimize_init_evaluator (S, &i_civp())
optimize_init_which(S,"min")
optimize_init_evaluatortype(S,"do")
optimize_init_params(S,init)

p = optimize(S)
st_replacematrix("b",p)

Austin Nichols



optimize() code

But the main program in a do-file has a little bit more work to do:

prog ivp, eclass

version 10

syntax varlist [if] [in] [, exog(varlist) endog(varlist)]
marksample touse

markout ‘touse’ ‘exog’ ‘endog’

gettoken lhs varlist:varlist

loc rhs: list varlist | endog

loc z: list varlist | exog

loc z: list z - endog

mat b = J(1,:word count ‘rhs’ _cons’,0)
matname b ‘rhs’ _cons, c(.)

mata: i_ivp("‘lhs’", "‘rhs’", "‘z’", "‘touse’")
eret post b, e(‘touse’) depname(‘lhs’)

eret di

end
mata:

void i_civp(todo,b,crit,g,H)

external y,X,Z,W
m=2’ ((y:*exp(-X*b’):- 1))
crit=(m’*Wxm)

void i_ivp(string scalar lhs, string scalar rhs, string scalar z, string scalar ok)
{

external y,X,Z,W

y = st_data(., tokens(lhs), ok)

cons = J(rows(y),1,1)

X = st_data(., tokens(rhs), ok), cons

Z = st_data(., tokens(z), ok), cons

W = cholinv(Z’Z)

init = st_matrix("b")

S = optimize_init()




optimize() code

If you save the program as ivp.ado, you can run a GMM-IV-Poisson model
easily and compare:

use http://fmwww.bc.edu/ec-p/data/wooldridge/card, clear
ssc inst ivpois, replace

ssc inst ivreg2, replace

bs: ivp wage educ, endog(educ) exog(nearc4)

bs: ivpois wage educ, endog(educ) exog(nearc4)

ivpois wage educ, endog(educ) exog(nearcéd)

ivreg2 lwage (educ=nearc4)

The SSC program ivpois is just a longer version of ivp with some extras
(checking for various errors, collinearity, etc.), but not nearly as developed as
ivreg2 (also on SSC).

Austin Nichols



Cross products
Simple syntax for gnn?

Structures

A better way to handle some of the passing of arguments and functions is to
define a Mata structure (see Gould 2007 and help M-2 struct).

We could put all the vectors, matrices, scalars like rows(y), etc. in one
structure and refer to that structure in the various functions we might need.
No time for a detailed look at that approach today.

Austin Nichols



Structures

Simple syntax for gnn?

quadcross

| should be using quadcross for all the matrix multiplication above.

But this:
m=X’ (y-X*b’)
is a bit easier to read than:

m=quadcross (X, (y-quadcross(X’,b’)))

Austin Nichols



Structures
Cross products

Syntax choices for a hypothetical gmm

The fact that the only moving parts so far have been the moment condition m
and the form of the weight matrix W suggests that a simple way to create a
general gmm command is to ask the user to supply a varlist, or possibly more
than one, and to supply a moment condition in terms of y and X, in the spirit
of twoway function. A temporary file can be written out via the file
command just like the above ado files, but with the appropriate text inserted.

Of course, a more sophisticated version of the command would request a
gradient, do some checking of whether the user has made mistakes, etc. A
different approach would require the user to compile a Mata function ahead of
time, and supply the name of the function. | don’t think these approaches are
necessarily incompatible, but I'd like to poll Stata users present to see what
makes sense to them. To you, | mean.

Austin Nichols



References

Angrist, Joshua D. 2001. “Estimation of limited dependent variable models
with dummy endogenous regressors: simple strategies for empirical practice.”
Journal of Business and Economic Statistics, 19:2-16.

Baum, Christopher F., Mark E. Schaffer, and Steven Stillman. 2003.
“Instrumental variables and GMM: Estimation and testing.” Stata Journal,
3(1): 1-31.

Baum, Christopher F., Mark E. Schaffer, and Steven Stillman. 2007.
“Enhanced routines for instrumental variables/GMM estimation and testing.”
Stata Journal, 7(4): 465-506.

Chamberlain, G. 1982. “Multivariate regression models for panel data.” Journal
of Econometrics, 18: 5—46.

Chamberlain, G. 1984. “Panel Data.” in Griliches, Zvi and M.D. Intrilligator,
eds. Handbook of Econometrics, Vol.2 Ch.22: 1247-1318.

Austin Nichols



References

Gould, William. 2007. “Mata Matters: Structures.” Stata Journal, 7(4):
556-570.

Hansen, Lars Peter. 1982. “Large Sample Properties of Generalized Method of
Moments Estimators.” Econometrica, 50: 1029-1054.

Hayashi, Fumio. 2000. Econometrics. 1st ed. Princeton, NJ: Princeton
University Press.

Mullahy, John. 1997. “Instrumental-Variable Estimation of Count Data
Models: Applications to Models of Cigarette Smoking Behavior.” The Review
of Economics and Statistics, 79(4):586-593.

Windmeijer, Frank. 2006. “GMM for Panel Count Data Models.” Discussion
Paper No. 06/591, Department of Economics, University of Bristol.

Wooldridge, J.M. 2002.
Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: MIT
Press.

Austin Nichols



