Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

Survey bootstrap and bootstrap weights

Stas Kolenikov

Department of Statistics University of Missouri-Columbia

SNASUG July 25, 2008

Stas Kolenikov U of Missouri

- Resampling inference
- Survey inference
- bsweights
- Examples
- Conclusions
- References

The basic idea of the bootstrap

- Population distribution $F(\cdot) \mapsto$ sample $X_1, \ldots, X_n \mapsto$ empirical distribution function $F_n(x) = \frac{1}{n} \sum \mathbb{I}[X_i \le x] \equiv \mathbb{E}_n \mathbb{I}[X_i \le x]$
- Parameter $\theta = T(F)$, its estimate $\hat{\theta}_n = T(F_n)$
- Inference goal: assess sampling variability of $\hat{\theta}_n$ about θ
- Bootstrap (Efron 1979): take samples of size *n* with replacement $(X_1^{(r)}, \ldots, X_n^{(r)}), r = 1, \ldots, R$ from $F_n(\cdot)$, obtain parameter estimates $\tilde{\theta}_*^{(r)} = T(F_n^{(r)})$
- Exact bootstrap: all possible subsamples; Monte Carlo: random set of say *R* = 1000 replications
- An estimate of the distribution function of $\hat{\theta}_n$ is $G_{n,R}(t) = \frac{1}{R} \sum_{r=1}^{R} \mathbb{I}[\tilde{\theta}_*^{(r)} \leq t] \equiv \mathbb{E}_*[\tilde{\theta}_* \leq t]$

Stas Kolenikov U of Missouri

Resampling inference

- Survey inference
- bsweights
- Examples
- Conclusions
- References

Bias, variance, CIs

- $\theta \leftrightarrow \hat{\theta}_n$ is like $\hat{\theta}_n \leftrightarrow \tilde{\theta}_*^{(r)}$
- Estimate of bias:

$$\mathbb{B}[\hat{\theta}_n] = \mathbb{E}[\hat{\theta}_n - \theta] \approx \mathbb{E}_*[\tilde{\theta}_* - \hat{\theta}_n] = \hat{\mathbb{B}}_B[\hat{\theta}_n] \approx \frac{1}{R} \sum_r (\tilde{\theta}_*^{(r)} - \hat{\theta})$$
(1)

Estimate of variance:

$$\mathbb{V}[\hat{\theta}_n] = \mathbb{E}(\hat{\theta}_n - \mathbb{E}\,\hat{\theta}_n)^2 \\\approx \mathbb{E}_*(\tilde{\theta}_* - \mathbb{E}_*\,\tilde{\theta}_*)^2 = \hat{\mathbb{V}}_B[\hat{\theta}_n] \approx \frac{1}{R} \sum_r (\tilde{\theta}_*^{(r)} - \bar{\tilde{\theta}}_*)^2 \quad (2)$$

- Percentile CI: $\Pr[\hat{\theta}_n \leq t] \approx \mathbb{E}_* \ \mathbb{I}[\tilde{\theta}_* \leq t] \tag{3}$
- Bias-corrected CI:

$$\Pr[\hat{\theta}_n \le t] \approx \mathbb{E}_* \, \mathbb{I}[2\hat{\theta}_n - \tilde{\theta}_* \le t] \tag{4}$$

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

Survey setting

- Complex survey designs include stratification, multiple stages of selection, unequal probabilities of selection, non-response and post-stratification adjustments, ...
- Unless utmost precision is required (or sampling fractions are really large), it suffices to approximate the real designs by two-stage stratified designs with PSUs sampled with replacement:

svyset psu [pweight = sampweight], strata(strata)

Notation: # strata = L, # units in *h*-th strata = n_h, PSUs are indexed by *i*, SSUs are indexed by *k*, so the generic notation is x_{hik}

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

- bsweights
- Examples
- Conclusions
- References

Variance estimation methods

- Taylor series linearization (Särndal, Swensson & Wretman 1992): the derivatives need to be obtained for each individual model; streamlined by _robust
- Balanced repeated replication (McCarthy 1969): use half-samples of the data, estimate, repeat *R* times, combine results using analogues of (1)–(2) Features: $\forall h = 1, ..., L n_h = 2, R = 4([L/4] + 1)$ by using Hadamard matrices
- Jackknife (Kish & Frankel 1974, Krewski & Rao 1981): throw one PSU out, estimate, combine results using analogues of (1)–(2)

Features: # replications R = n, closest to linearization estimator, inconsistent for non-smooth functions

• Bootstrap (Rao & Wu 1988): resample m_h units with replacement from the available n_h units in stratum hFeatures: need internal scaling — best with Rao, Wu & Yue's (1992) weights, although other schemes are available; choice of m_h ; choice of R

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

Pros and cons of resampling estimators

- Only need the software that does weighted estimation — no need for programming specific estimators for each model
- + No need to release the unit identifiers in public data sets
- Computationally intensive
- Non-response and post-stratification need to be performed on every set of weights

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

- bsweights
- Examples
- Conclusions
- References

Comparisons of methods I

Based on Krewski & Rao (1981), Rao & Wu (1988), Kovar, Rao & Wu (1988), Shao (1996):

- Jackknife and linearization are asymptotically equivalent to higher order terms, coincide in certain situations, and have smaller biases than other methods
- **Coverage:** bootstrap \succ BRR \succ jackknife \succ linearization
- **Stability:** linearization \succ jackknife \succ BRR \succ bootstrap
- Making the statistic pivotal (Fisher's arctanh transform of correlation) improves coverage
- Bootstrap is the best method for one-sided CIs. It is rarely the best one for variance estimation, but is applicable in a wider set of circumstances

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

Comparisons of methods II

Shao (1996): "... the choice of the method may depend more on nonstatistical considerations, such as the feasibility of their implementation... Blindly applying the resampling methods may yield incorrect results"

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

- Examples
- Conclusions

References

Scaling of weights

- Rao & Wu (1988) showed that naïve bootstrap (resample m_h PSUs with replacement from *h*-th stratum) is biased, producing variance estimates in *h*-th stratum that are understated by a factor of $(n_h - 1)/m_h$
- They proposed internal scaling: within each stratum, modify the pseudo-values, i.e., the estimates of the moments
- How can this be generalized to other nonlinear models?
- Rao, Wu & Yue (1992) proposed scaling of weights: if in *r*-th replication, the *i*-th unit in stratum *h* is to be used m^(r)_{hi} times, then the bootstrap weight is

$$w_{hik}^{(r)} = \left\{1 - \left(\frac{m_h}{n_h - 1}\right)^{1/2} + \left(\frac{m_h}{n_h - 1}\right)^{1/2} \frac{n_h}{m_h} m_{hi}^{(r)}\right\} w_{hik}$$

where w_{hik} is the original probability weight

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

bsweights **syntax**

bsweights prefix, reps(#) n(#) [balanced replace calibrate(command @) verbose quasi Monte Carlo options]

- reps() specifies the number of resampling replications
- n () specifies the number of units to be resampled from each stratum, or from the whole data set with no complex survey structure
- balanced specifies balanced bootstrap
- calibrate calls command substituting the name of the current replicate weight for @, and verbose shows the output of the calibrating command
- replace allows overwriting the existing set of weights
- *QMC options* are qmcstratified, qmcmatrix, shuffle and balance referring to quasi-Monte Carlo based resampling variance estimators (Kolenikov 2007).

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

- bsweights
- Examples
- Conclusions
- References

Sample size and # replications

What is a good choice of the resample size m_h ?

- 0 < m_h ≤ n_h − 1, where the latter inequality is to maintain meaningful ranges
- Rao & Wu (1988): the optimal choice $m_h = (n_h - 2)^2/(n_h - 1)$ corrects for the skewness of the estimate distribution when its variance is known
- Rao & Wu (1988), Kovar, Rao & Wu (1988), Rao, Wu & Yue (1992): $m_h = n_h 1$ gives more accurate coverage in both tails of CIs than $m_h = n_h 3$.

What is a good number of replicates?

- $R \ge$ degrees of freedom of the design = $\sum_h n_h L$
- Rao & Wu (1988) found little gain in going beyond R = 100.
- The "industry standard" seems to be R = 500.

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

• Option calibrate(*call*@) allows to call an external program to perform additional adjustments on weights.

Calibration

- The replication weight variables will be substituted for @ in the above call.
- Subpopulation estimation: set weights outside the subpopulation = 0:

```
program define SubPopW
  gettoken weightvar condition : 0
  replace `weightvar' = 0 if !(`condition')
end
bsweights bsw , ...calibrate(SubPopW @ black)
bs4rw , rw(bsw*) : ... [pw=weight*black]
```

Stas Kolenikov U of Missouri

- Resampling inference
- Survey inference
- bsweights
- Examples
- Conclusions
- References

Balanced bootstrap

- First order balance: each unit is resampled the same number of times (Davison, Hinkley & Schechtman 1986, Nigam & Rao 1996)
 - Reduces (simulation) variability of the bias estimate (by removing the linear part from it — adequate for linear or symmetric statistics)
 - Reduces the variability of the variance estimate somewhat; no discernible effect on coverage?
 - Achieved by permuting the vector of *R* concatenated sample unit labels
- Efficient implementations: Gleason (1988)
- Second order balance: each pair of units is resampled the same number of times (Graham, Hinkley, John & Shi 1990)
- The usual bootstrap: discrepancy for either first or second order balance are O_{*}(R^{-1/2})

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

Balancing conditions

First order balance can be achieved by bsweights:

- Each unit in stratum *h* is used the same number of times k_h
- Total number of units used in all replications: $k_h n_h = m_h R$
- Balancing condition: $\forall h : m_h R$ is a multiple of n_h
 - E.g., if *n_h* takes values 2, 3, 4 and 5, *R* must be a multiple of $3 \cdot 4 \cdot 5 = 60$

Second order balance: difficult to satisfy for an arbitrary design (except for BRR when $\forall h n_h = 2$, and jackknife). Nigam & Rao (1996): constant $n_h = 2k$, or $n_h = 4k + 1$, 4k + 3 which is a prime or a prime power.

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

QMC ideas in survey resampling

Quasi-Monte Carlo methods are widely used in computational mathematics and physics to approximate highly dimensional integrals (Niederreiter 1992)

- Regular deterministic sequences in d dimensions
- Discrepancy: $O(A(d)n^{-1} \ln^d n)$ where *d* is dimension, *n* is the length of sequence
- This rate is better than the one for the usual Monte Carlo, $O_p(n^{-1/2})$, for $n \gg \exp(d)$
- Dimensionality curse: A(d) is combinatorial in d
- Stratified version: each dimension \mapsto each strata
- Matrix version: 2D sequence pointing at the units to be resampled

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

Do-file bsw-example provides examples of:

- basic bootstrap
- balanced bootstrap with fine-tuning the number of replicates *R* to achieve first order balance
- versions of QMC bootstrap
- calibrated weights
- estimation for subpopulation

Non-survey uses:

- eliminating simulation bias by balanced bootstrap
- weighted bootstrap

Examples

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

Stata or Mata?

- ado code: 230 lines
 - parsing options
 - choosing the method
 - bsample in the simplest case
 - rescaling the weights
- Mata code: 340 lines
 - balanced bootstrap
 - QMC resampling
 - allocating the samples
 - any other potentially applicable balanced designs

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

What bsweights cannot do:

 Design effect — that is a post-estimation feature. One would need to save the relevant variance-covariance matrices and re-post them

Limitations

• t-percentiles of jackknife-after-bootstrap

$$\mathcal{D}[t] = rac{\hat{ heta} - heta}{\sqrt{ extsf{v}_J}} pprox \mathcal{D}[t^*] = rac{\hat{ heta}^* - \hat{ heta}}{\sqrt{ extsf{v}_J^*}}$$

Estimation feature rather than setting up pre-estimation weights: special coding of the jackknife passes within the bootstrapping routine

- Finite population corrections
- Missing and imputed data: re-impute missing values in each bootstrap sample (Shao 1996, Shao 2003)
- Other survey bootstrap schemes (BMM, BWO, RHSB)

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

2 Survey inference

3 bsweights

4 Examples

What I covered was...

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

 Wison, A. C., Hinkley, D. V. & Schechtman, E. (1986), 'Efficient bootstrap simulation', *Biometrika* 73(3), 555–566.

For the second secon

References I

Caleason, J. R. (1988), 'Algorithms for balanced bootstrap simulations', *The American Statistician* 42(4), 263–266.
 Caham, R. L., Hinkley, D. V., John, P. W. M. & Shi, S. (1990), 'Balanced design of bootstrap simulations', *Journal of the Royal Statistical Society* 52(1), 185–202.
 Kish, L. & Frankel, M. R. (1974), 'Inference from complex samples', *Journal of the Royal Statistical Society, Series*

B 36, 1–37.

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

References II

- Kolenikov, S. (2007), Applications of quasi-Monte Carlo methods in inference for complex survey data, *in* 'Proceedings of the Survey Research Methods Section of ASA'.
- Kovar, J. G., Rao, J. N. K. & Wu, C. F. J. (1988), 'Bootstrap and other methods to measure errors in survey estimates', *Canadian Journal of Statistics* 16, 25–45.
 Koveski, D. & Rao, J. N. K. (1981), 'Inference from stratified samples: Properties of the linearization, jackknife and balanced repeated replication methods', *The Annals of Statistics* 9(5), 1010–1019.

 Carthy, P. J. (1969), 'Pseudo-replication: Half samples', Review of the International Statistical Institute 37(3), 239–264.

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

References III

Determined and Applied Mathematics, Physical Applied Mathematics, Physical Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia.

Mgam, A. K. & Rao, J. N. K. (1996), 'On balanced bootstrap for stratified multistage samples', *Statistica Sinica* 6(1), 199–214.

- Reo, J. N. K. & Wu, C. F. J. (1988), 'Resampling inference with complex survey data', *Journal of the American Statistical Association* 83(401), 231–241.
- Rao, J. N. K., Wu, C. F. J. & Yue, K. (1992), 'Some recent work on resampling methods for complex surveys', *Survey Methodology* 18(2), 209–217.
- Sarndal, C.-E., Swensson, B. & Wretman, J. (1992), *Model Assisted Survey Sampling*, Springer, New York.

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

References IV

ao, J. (1996), 'Resampling methods in sample surveys (with discussion)', *Statistics* 27, 203–254.
ao, J. (2003), 'Impact of the bootstrap on sample surveys', *Statistical Science* 18, 191–198.

Stas Kolenikov U of Missouri

Resampling inference

Survey inference

bsweights

Examples

Conclusions

References

Wishes and grumbles for bs4rw

- more "respect" to svy setting
- **posting** e (V_SRS) **for** estat effects
- capacity of interacting with the current weights for imputation and/or subpopulation work
- explicit subpop option: zero out the weights outside the subpopulation