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The basic idea of the bootstrap
• Population distribution F (·) 7→ sample X1, . . . ,Xn 7→

empirical distribution function
Fn(x) = 1

n
∑

1I[Xi ≤ x ] ≡ En 1I[Xi ≤ x ]

• Parameter θ = T (F ), its estimate θ̂n = T (Fn)

• Inference goal: assess sampling variability of θ̂n about θ
• Bootstrap (Efron 1979): take samples of size n with

replacement (X (r)
1 , . . . ,X (r)

n ), r = 1, . . . ,R from Fn(·),
obtain parameter estimates θ̃(r)

∗ = T (F (r)
n )

• Exact bootstrap: all possible subsamples; Monte Carlo:
random set of say R = 1000 replications

• An estimate of the distribution function of θ̂n is
Gn,R(t) = 1

R
∑R

r=1 1I[θ̃(r)
∗ ≤ t ] ≡ E∗[θ̃∗ ≤ t ]
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Bias, variance, CIs
• θ ↔ θ̂n is like θ̂n ↔ θ̃

(r)
∗

• Estimate of bias:

B[θ̂n] = E[θ̂n−θ] ≈ E∗[θ̃∗− θ̂n] = B̂B[θ̂n] ≈ 1
R

∑
r

(θ̃
(r)
∗ − θ̂) (1)

• Estimate of variance:

V[θ̂n] = E(θ̂n − E θ̂n)2

≈ E∗(θ̃∗ − E∗ θ̃∗)2 = V̂B[θ̂n] ≈ 1
R

∑
r

(θ̃
(r)
∗ − ¯̃θ∗)2 (2)

• Percentile CI:
IPr[θ̂n ≤ t ] ≈ E∗ 1I[θ̃∗ ≤ t ] (3)

• Bias-corrected CI:

IPr[θ̂n ≤ t ] ≈ E∗ 1I[2θ̂n − θ̃∗ ≤ t ] (4)
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Survey setting
• Complex survey designs include stratification, multiple

stages of selection, unequal probabilities of selection,
non-response and post-stratification adjustments, . . .

• Unless utmost precision is required (or sampling
fractions are really large), it suffices to approximate the
real designs by two-stage stratified designs with PSUs
sampled with replacement:

svyset psu [pweight =sampweight ],strata(strata)

• Notation: # strata = L, # units in h-th strata = nh, PSUs
are indexed by i , SSUs are indexed by k , so the generic
notation is xhik
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Variance estimation methods
• Taylor series linearization (Särndal, Swensson &

Wretman 1992): the derivatives need to be obtained for each
individual model; streamlined by robust

• Balanced repeated replication (McCarthy 1969): use
half-samples of the data, estimate, repeat R times, combine
results using analogues of (1)–(2)
Features: ∀h = 1, . . . ,L nh = 2, R = 4([L/4] + 1) by using
Hadamard matrices

• Jackknife (Kish & Frankel 1974, Krewski & Rao 1981): throw
one PSU out, estimate, combine results using analogues of
(1)–(2)
Features: # replications R = n, closest to linearization
estimator, inconsistent for non-smooth functions

• Bootstrap (Rao & Wu 1988): resample mh units with
replacement from the available nh units in stratum h
Features: need internal scaling — best with Rao, Wu & Yue’s
(1992) weights, although other schemes are available;
choice of mh; choice of R
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Pros and cons of resampling
estimators

+ Only need the software that does weighted
estimation — no need for programming specific
estimators for each model

+ No need to release the unit identifiers in public
data sets

– Computationally intensive
– Non-response and post-stratification need to

be performed on every set of weights
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Comparisons of methods I
Based on Krewski & Rao (1981), Rao & Wu (1988), Kovar,
Rao & Wu (1988), Shao (1996):

• Jackknife and linearization are asymptotically
equivalent to higher order terms, coincide in certain
situations, and have smaller biases than other methods

• Coverage: bootstrap � BRR � jackknife � linearization
• Stability: linearization � jackknife � BRR � bootstrap
• Making the statistic pivotal (Fisher’s arctanh transform

of correlation) improves coverage
• Bootstrap is the best method for one-sided CIs. It is

rarely the best one for variance estimation, but is
applicable in a wider set of circumstances
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Comparisons of methods II
Shao (1996): “. . . the choice of the method may depend
more on nonstatistical considerations, such as the feasibility
of their implementation. . . Blindly applying the resampling
methods may yield incorrect results”
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Scaling of weights
• Rao & Wu (1988) showed that naı̈ve bootstrap

(resample mh PSUs with replacement from h-th
stratum) is biased, producing variance estimates in h-th
stratum that are understated by a factor of (nh − 1)/mh

• They proposed internal scaling: within each stratum,
modify the pseudo-values, i.e., the estimates of the
moments

• How can this be generalized to other nonlinear models?
• Rao, Wu & Yue (1992) proposed scaling of weights: if

in r -th replication, the i-th unit in stratum h is to be used
m(r)

hi times, then the bootstrap weight is

w (r)
hik =

{
1−

( mh

nh − 1

)1/2
+
( mh

nh − 1

)1/2 nh

mh
m(r)

hi

}
whik

where whik is the original probability weight
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bsweights syntax
bsweights prefix, reps(#) n(#) [balanced
replace calibrate(command @) verbose quasi
Monte Carlo options ]

• reps() specifies the number of resampling replications

• n() specifies the number of units to be resampled from each
stratum, or from the whole data set with no complex survey
structure

• balanced specifies balanced bootstrap

• calibrate calls command substituting the name of the
current replicate weight for @, and verbose shows the
output of the calibrating command

• replace allows overwriting the existing set of weights

• QMC options are qmcstratified, qmcmatrix, shuffle
and balance referring to quasi-Monte Carlo based
resampling variance estimators (Kolenikov 2007).
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Sample size and # replications
What is a good choice of the resample size mh?
• 0 < mh ≤ nh − 1, where the latter inequality is to

maintain meaningful ranges
• Rao & Wu (1988): the optimal choice

mh = (nh − 2)2/(nh − 1) corrects for the skewness of
the estimate distribution when its variance is known

• Rao & Wu (1988), Kovar, Rao & Wu (1988), Rao, Wu &
Yue (1992): mh = nh − 1 gives more accurate coverage
in both tails of CIs than mh = nh − 3.

What is a good number of replicates?
• R ≥ degrees of freedom of the design =

∑
h nh − L

• Rao & Wu (1988) found little gain in going beyond
R = 100.

• The “industry standard” seems to be R = 500.
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Calibration
• Option calibrate(call @) allows to call an external

program to perform additional adjustments on weights.
• The replication weight variables will be substituted for

@ in the above call.
• Subpopulation estimation: set weights outside the

subpopulation = 0:

program define SubPopW
gettoken weightvar condition : 0
replace ‘weightvar’ = 0 if !(‘condition’)

end
bsweights bsw , ...calibrate(SubPopW @ black)
bs4rw , rw(bsw*) : ... [pw=weight*black]
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Balanced bootstrap
• First order balance: each unit is resampled the same

number of times (Davison, Hinkley &
Schechtman 1986, Nigam & Rao 1996)

• Reduces (simulation) variability of the bias estimate (by
removing the linear part from it — adequate for linear or
symmetric statistics)

• Reduces the variability of the variance estimate
somewhat; no discernible effect on coverage?

• Achieved by permuting the vector of R concatenated
sample unit labels

• Efficient implementations: Gleason (1988)
• Second order balance: each pair of units is resampled

the same number of times (Graham, Hinkley, John &
Shi 1990)

• The usual bootstrap: discrepancy for either first or
second order balance are O∗(R−1/2)
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Balancing conditions
First order balance can be achieved by bsweights:

• Each unit in stratum h is used the same number of
times kh

• Total number of units used in all replications:
khnh = mhR

• Balancing condition: ∀h : mhR is a multiple of nh
• E.g., if nh takes values 2, 3, 4 and 5, R must be a

multiple of 3 · 4 · 5 = 60

Second order balance: difficult to satisfy for an arbitrary
design (except for BRR when ∀h nh = 2, and jackknife).
Nigam & Rao (1996): constant nh = 2k , or
nh = 4k + 1,4k + 3 which is a prime or a prime power.
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QMC ideas in survey
resampling

Quasi-Monte Carlo methods are widely used in
computational mathematics and physics to approximate
highly dimensional integrals (Niederreiter 1992)
• Regular deterministic sequences in d dimensions
• Discrepancy: O(A(d)n−1 lnd n) where d is dimension, n

is the length of sequence
• This rate is better than the one for the usual Monte

Carlo, Op(n−1/2), for n� exp(d)

• Dimensionality curse: A(d) is combinatorial in d
• Stratified version: each dimension 7→ each strata
• Matrix version: 2D sequence pointing at the units to be

resampled
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Examples

Do-file bsw-example provides examples of:

• basic bootstrap
• balanced bootstrap with fine-tuning the number of

replicates R to achieve first order balance
• versions of QMC bootstrap
• calibrated weights
• estimation for subpopulation

Non-survey uses:
• eliminating simulation bias by balanced bootstrap
• weighted bootstrap
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Stata or Mata?
• ado code: 230 lines

• parsing options
• choosing the method
• bsample in the simplest case
• rescaling the weights

• Mata code: 340 lines
• balanced bootstrap
• QMC resampling
• allocating the samples
• any other potentially applicable balanced designs
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Limitations
What bsweights cannot do:

• Design effect — that is a post-estimation feature. One
would need to save the relevant variance-covariance
matrices and re-post them

• t-percentiles of jackknife-after-bootstrap

D[t ] =
θ̂ − θ
√

vJ
≈ D[t∗] =

θ̂∗ − θ̂√
v∗J

Estimation feature rather than setting up pre-estimation
weights: special coding of the jackknife passes within
the bootstrapping routine

• Finite population corrections
• Missing and imputed data: re-impute missing values in

each bootstrap sample (Shao 1996, Shao 2003)
• Other survey bootstrap schemes (BMM, BWO, RHSB)
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What I covered was. . .

1 Resampling inference

2 Survey inference

3 bsweights

4 Examples

5 Conclusions

6 References
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Wishes and grumbles for bs4rw
• more “respect” to svy setting
• posting e(V SRS) for estat effects

• capacity of interacting with the current weights for
imputation and/or subpopulation work

• explicit subpop option: zero out the weights outside the
subpopulation
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