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Motivation

I Sampling can be costly.

I Sample size is often chosen so that point estimates achieve a minimum level of
precision.

I A stratified sampling design can reduce costs by improving efficiency relative to
simple random sampling.
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Stratified Sampling Design

I A stratification variable is used to partition the population into homogeneous
subgroups. Simple random sampling is performed within each group.

I We want to choose the set of strata boundary points that minimizes the
within-stratum variance and maximizes the between-strata variance.

I This can improve the precision of point estimates.
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Optimal Stratification

I Number of strata (based on the needs of the end user)

I Optimal sample allocation (simple closed form solution exists)

I Optimal strata bounds
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Optimal Stratification: Previous Research

I Approximation methods - Delenius and Hodges (1959), Gunning and Horgan
(2004)

I Numerical optimization methods - Lavallee and Hidiroglou (1988), Kozak (2004)

I Dynamic Programming - Buhler and Deutler (1975), Khan, Nand and Ahmad
(2008)
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Contribution

I Use dynamic programming to determine optimal strata bounds.

I Build on the work of Khan, et. al. (2008) and take the theory to the data.

I Describe the user-written Stata command optbounds which calculates optimal
strata boundary points.

I Assess margin of error (for a 95% confidence interval) and design effect.
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Optimal Stratification for Variance Reduction

Let X be a random variable that is defined on [a, b] and is partitioned into L strata. We
want to minimize the following expression:

Var(x̄st) =
L∑

h=1

W 2
h · Var(x̄h) (1)

I Wh is the weight given to stratum h, x̄h is the sample mean within stratum h and
x̄st is the stratified sample mean.

I If we make a certain stratum smaller, the other strata must necessarily become
larger.

I As a result, the strata variances must be minimized simultaneously.
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Optimal Stratification: Sequential Formulation

We can rewrite (1) as a function of the strata boundary points (d0, . . . , dL). An optimal
stratification scheme solves the following problem:

min
{d1,...,dL−1}

L∑
h=1

φh(dh, dh−1), (2)

subject to a = d0 ≤ d1 ≤ . . . ≤ dL−1 ≤ dL = b

I dh and dh−1 are the boundary points for stratum h

I φh depends on the allocation method

I For example, under Neyman (optimal) allocation φh = Whσh, nh = nWhσh∑L
k=1

Wkσk
and

σ2
h =

∑Nh
i=1(xhi−x̄h)2

Nh−1
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Optimal Stratification as a Multi-Stage Problem

I We can rewrite (2) as a series of simple recursive equations.

I Dynamic programming provides a method for finding the set of decision rules
(policy functions) that solve these equations.

I It can be shown that the solutions to the sequential and recursive problems are
identical. This is referred to as the principle of optimality (Bellman 1957).
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Optimal Stratification: Recursive Formulation

We can solve the recursive problem below using standard dynamic programming
techniques (Rust 2008).

Vh(dh) = min
dh−1

[
φh(dh, dh−1) + Vh−1(dh−1)

]
, h ≥ 2 (3)

V1(d1) = φ1(d1)

Subject to dh ≥ dh−1 ≥ 0
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Example: Triangular Distribution

Let X be a continuous random variable with support [a, b] and mode m. This variable is
said to follow a triangular distribution if it has the following density function:

f (x) =


2(x−a)

(b−a)(m−a)
; a ≤ x ≤ m

2(b−x)
(b−a)(b−m)

; m < x ≤ b

(4)
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Estimating the Mode of a Triangular Distribution

Let X be a random variable with pdf (4). For a random sample X = (X1, . . . ,Xs) with
order statistics X(1) < X(2) < . . . < X(s), the likelihood for X is:

L(X; a,m, b) =
( 2

b − a

)s{ r∏
i=1

X(i) − a

m − a

s∏
i=r+1

b − X(i)

b −m

}
(5)

I r is implicitly defined by X(r) ≤ m < X(r+1)

I For given values of a and b we can easily compute m. In general, a and b are
unobserved population parameters (Kotz and van Dorp 2004).

I The ML estimates of endpoints a and b can be computed using numerical
methods (e.g. Nelder-Mead).
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Experiment

I Compare the results of stratification using dynamic programming and the popular
cumulative square root frequency (CSRF) algorithm.

I Use the variable price from the Stata auto dataset (74 observations).

I Use a sample size of 15 and allocate sampled items between three strata using
Neyman allocation.

I Price is assumed to follow a triangular distribution.

I For the CSRF algorithm price is grouped into 9 equal classes.
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Stata Output

.

. optbounds price, distribution(Triangular) stratanum(3) endpts(1 2) nooutput b
> ins(9)

ML estimate of the mode
3798
-----------------------
Stratification Results

Minimized Standard Deviation
1161.825181

Optimal Strata Bounds
1

1 6079.705973
2 9674.824836

.

. sum price

Variable Obs Mean Std. Dev. Min Max

price 74 6165.257 2949.496 3291 15906
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Optimal Strata Bounds
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Results

Method Point Estimate Standard Error Margin of Error as Design Effect
(Population Mean) % of Point Estimate

DP 5,969 163 4.9% .091

CSRF 8,451 419 8.8% .220
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Sensitivity Analysis
Method Margin of Error as Design Effect

% of Point Estimate

DP 4.9% .091

CSRF

3 Classes 5.5% .094

5 Classes 9.6% .236

7 Classes 8.2% .195

9 Classes 8.8% .220

11 Classes 9.0% .203

13 Classes 8.9% .201

15 Classes 4.5% .053

17 Classes 8.6% .197
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Conclusion

I A stratified sampling design can improve the precision of point estimates.

I In practice, optimal stratification using dynamic programming compares favorably
with the commonly used CSRF algorithm.

I Dynamic programming methods are flexible and theoretically appealing.
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