Big Data in Stata

Paulo Guimaraes1,2

1Banco de Portugal
2Universidade do Porto

Portuguese Stata UGM - Sept 18, 2015
What do I mean by ”big data”?

- ”big data” has several meanings
- the Vs of big data
- ”large data set” may be more appropriate
- many observations, many variables
- typical examples: large administrative data sets, panel data
Why does it matter?

- your computer may not be able to load the data
 - Stata stores data in RAM
 - memory is allocated dynamically
 - Stata imposes a limit of 2.1 billion observations (except Stata/MP)
- time becomes relevant - usual procedures may take hours, even days
- usual procedures may not be feasible at all
Basic advice

- use a powerful computer (many MhZ) with lots of RAM
- invest in your code
- test your code in a small data set
- take advantage of many user-programmed tools
- use the latest version of Stata
- use Stata/MP
Stata MP

- Stata/MP takes advantage of computers with multiple cores and multiple processors
- runs 1.6 times faster on 2 cores, 2.1 times faster on 4 cores, and 2.7 times faster on 8 cores (Statacorp)
- All timings are on a 1 million observation dataset. The two regressions included 50 covariates.

<table>
<thead>
<tr>
<th>Timing (seconds)</th>
<th>24 cores</th>
<th>1 core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>generate a new variable</td>
<td>0.03</td>
<td>0.33</td>
</tr>
<tr>
<td>summarize 50 variables</td>
<td>0.88</td>
<td>19.55</td>
</tr>
<tr>
<td>twoway tabulation</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>linear regression</td>
<td>0.65</td>
<td>11.48</td>
</tr>
<tr>
<td>logistic regression</td>
<td>7.19</td>
<td>59.27</td>
</tr>
</tbody>
</table>

Source: Statablog

- for details see Stata/MP Performance Report
Reading data

- Stata reads faster from its native format
- Stata reads all data to RAM and there are limits on the number of observations and number of variables. These limits depend on your version of Stata
- if you have trouble importing a large Excel file try using set excelxlsxlargefile on
- you can approximate the size of your data set with

\[M = \frac{N \times V \times W + 4 \times N}{1024^2} \]

M - size in megabytes
N - number of observations
V - number of variables
W - average width in bytes of a variable
Source: Statacorp
Read only the variables that you need

- you can read only a select number of observations or variables

 use [varlist] [if] [in] using filename [, clear nolabel]

- not all I/O commands allow a variable list and the [if] [in] qualifiers. Some that do are: infile, infix, fdause

- you can also use odbc to extract just the needed variables

- use third-party software such as DBMS or Stattransfer to select a subset of the variables
Simple coding tips

- make sure to specify the correct type for the variables
 - it saves space
 - it avoids problems

- compress your data

- avoid strings if you can (use value labels) **

- take advantage of Stata’s factor-variable operators *
 - use only one variable per category
 - do not store squared variables, interactions, or lagged values

- use built-in commands if possible (see which)
More coding tips

- **sort** *
 - use `sort` instead of `gsort` for "decreasing sorts" (Feenberg)
 - if you need to sort on several variables (byte, int, or long), consider using the user-written utility `hash` (Maurer)

- **collapse** *
 - may be faster to write your code for collapse
 - use the user-written `fastcollapse` (Maurer)

- recoding *
 - it makes a big difference how you (re)code
 - `recode` is typically slow
 - for additional examples see Canner and Schneider
And a few more ...

- **reshape** *
 - the `reshape` command is very slow
 - it is usually faster to break the data into several files and reassemble it on the desired format

- **egen** *
 - the `egen` command can also be very slow
 - it may pay to code alternatives to `egen`
Making Stata run faster

- learn Mata
 - Mata is a fast matrix language built into Stata
- write a Stata plugin
 - plugins are compiled code that you can attach to Stata
- if you have a desktop with multiple cores use the package parallel (Vega)
 - parallel runs multiple Stata instances on the same computer
- Lokshin and Radyakin (2014) showed that it is possible to join the power of multiple computers in a network
 - they built a set of tools to implement distributed computations (HPCCMD)
Keep the data simple

- use a "clean" dataset
 - data should have just the variables needed for the analysis
 - cases with missing observations should be removed
 - store the variables efficiently

- will a sample do?
 - for many procedures the results will be similar
 - it is fairly easy to sample observations or clusters (see Stata FAQs)
Understand your data

- do you have duplicate observations?
 - create a variable with frequency of unique cases
 - do the analysis with the "weights" option

- are observations repeated on the X variables?
 - instead of logit use binreg or glm on grouped data
 - instead of clogit use multin on grouped data
 - instead of poisson use poisson with exposure on grouped data
 - instead of regress use regress with weights on grouped data
What if you want to estimate a regression with thousands of regressors?
- It is possible using the iterative procedure of Guimaraes and Portugal (2010)
- Torres et al (2015) use Stata to estimate a linear regression function with 28 million observations and 33,491 covariates, 18 year dummies and a fixed effect
- the procedure may be adapted to other problems

What if you want to estimate a regression with a single fixed-effect?
- consider using areg or regress instead of xtreg
- but pay attention to clustered standard errors
More regressions ...

- What if you want to estimate a linear regression with two or more fixed effects?
 - there are many user-written commands (a2reg, gpreg, felsdsvreg, reg2hdfe)
 - but the gold standard nowadays is reghdfe by Sergio Correia
 - absorbs any number of fixed effects and their interactions
 - implements IV estimation
 - much faster and takes advantage of multiple cores
 - excellent support (github)

- What if you want to estimate a Poisson regression with two fixed effects?
 - use the package poi2hdfe
Advice on estimation of high-dimensional models

- be patient! this is not OLS regression!
- you can probably use a lower convergence criterion
- be careful about using the estimated fixed effects for secondary analysis
- remember that fes are only identified by imposing restrictions
- if you use clustered ses make sure you have a high enough number of clusters
An example

- with large data sets we can use more flexible parametrizations
- consider the typical wage regression

\[\log(wage) = \beta_1 \text{age} + \beta_2 \text{tenure} + \text{firm}_{fe} + \text{ind}_{fe} + \text{year}_{fe} \]

- employee-employer panel data set with 28 million observations (1986-2013)
- age and tenure were introduced as discretized variables
References

- Canner, J. and Schneider, E. "Optimizing Stata for Analysis of Large Data Sets" Stata Conference New Orleans, LA (July, 2013)
- Feenberg, D., "Stata for very large datasets" available at http://www.nber.org/stata/efficient/ (July 2012)
References

- Lokshin, M. and Radyakin, S. "Distributed computations in Stata" Stata Conference Boston, MA (August, 2014)
- Vega, G. "Just tired of endless loops! or parallel: Stata module for parallel computing" Stata Conference New Orleans, LA (July, 2013)