The impact of innovation on Healthcare costs: A multiple imputation approach

Erika Laranjeira^(1,2) & Filipe Grilo^(1,2)

(1) - FEP & (2) - CEF.UP, University of Porto, Portugal

 2^{nd} Portuguese Stata User Group Meeting Olisipo September 7^{th}

- Motivation
 - Technological Innovation in Healthcare
 - Multiple Imputation
- 2 "Filling" the Database: Multiple Imputation
- The Technological Index: Factor Analysis
 - The Technological Index
 - Factor Analysis
- Pre-Estimation: OLS vs. Robust
- Estimation Results
 - Estimation Results
 - Technological Index
- 6 Problems (and suggestions?)

- Motivation
 - Technological Innovation in Healthcare
 - Multiple Imputation
- "Filling" the Database: Multiple Imputation
- The Technological Index: Factor Analysis
 - The Technological Index
 - Factor Analysis
- Pre-Estimation: OLS vs. Robust
- Estimation Results
 - Estimation Results
 - Technological Index
- Problems (and suggestions?)

Technological Innovation in Healthcare

Main source of development

Increases quality, safety, timeliness and efficiency of healthcare services

There is not a consensus concerning the potential benefits and costs savings

- New technologies are more expensive
- Their introduction can even increase the type and the number of treated patients

Technological Innovation in Healthcare

Newhouse (1992), for example, tried to measure the role of technological innovation in health expenditure growth

Residual approach

This paper builds a technological index and tries to measure technological innovation directly

- This index requires technological health data from the 1980s
 - Problem:Missing Data

Multiple Imputation

Existence of missing values

- Recurring problem in any real investigation
- Can compromise results
 - Current software assume complete database
 - Exclude, from the analysis, observations with missing values (Listwise Deletion)

The solution: Multiple Imputation

- It sees the missing values as an integrate part of the database and iteratively imputes them with values
- It creates $N \ge 2$ new databases

- Motivation
 - Technological Innovation in Healthcare
 - Multiple Imputation
- 2 "Filling" the Database: Multiple Imputation
- The Technological Index: Factor Analysis
 - The Technological Index
 - Factor Analysis
- Pre-Estimation: OLS vs. Robust
- Estimation Results
 - Estimation Results
 - Technological Index
- Problems (and suggestions?)

Multiple Imputation


```
mi set style
mi xtset panelvar timevar [, tsoptions]
mi register [imputed; passive; regular] varlist
mi impute mvn ivars [= indepvars]
```

- Motivation
 - Technological Innovation in Healthcare
 - Multiple Imputation
- "Filling" the Database: Multiple Imputation
- The Technological Index: Factor Analysis
 - The Technological Index
 - Factor Analysis
- Pre-Estimation: OLS vs. Robust
- Estimation Results
 - Estimation Results
 - Technological Index
- Problems (and suggestions?)

The Technological Index

In order to measure healthcare technology, this paper had to create a technological index

- Quasi inexistence of quantitative data able to translate health technological level
- Main reference: TAI from the UN

16 variables

- Machines
- Procedures

The weights were determined by factor analysis

→ Skip to Pre-Estimation

Factor Analysis

Factor analysis groups together indicators that are collinear to form a composite indicator capable of capturing as much of common information of those indicators as possible Process:

- First step: Through Principal-component factor, a matrix of factor loadings is created
 - factor varlist [if] [in] [weight] [, method options]
- Second step:Rotate the matrix of factor loadings
 - rotate
- Last step: Construction of the weights from the matrix of factor loadings after rotation and squaring it

- Motivation
 - Technological Innovation in Healthcare
 - Multiple Imputation
- "Filling" the Database: Multiple Imputation
- The Technological Index: Factor Analysis
 - The Technological Index
 - Factor Analysis
- Pre-Estimation: OLS vs. Robust
- Estimation Results
 - Estimation Results
 - Technological Index
- Problems (and suggestions?)

Pre-Estimation: OLS vs. Robust

There was a previous suspicion of outliers and heterocedasticity within the data

If confirmed, Robust regression is more appropriate to these cases To our knowledge, in STATA there is not a "Hausman test" in order to choose Robust over OLS

→ Skip to Est. Results

A simple algorithm

Simple algorithm:

http://www.ats.ucla.edu/stat/stata/dae/rreg.htm

- First step: OLS post-estimation diagnosis, focused on outliers
 - lvr2plot

A simple algorithm

- Second step: Analyze the observations' weights attributed by Robust Regression
 - The more cases in the robust regression that have a weight close to one, the closer the results of the OLS and robust regressions
 - rreg depvar [indepvars], gen(weight)
 - list weight

- Motivation
 - Technological Innovation in Healthcare
 - Multiple Imputation
- "Filling" the Database: Multiple Imputation
- The Technological Index: Factor Analysis
 - The Technological Index
 - Factor Analysis
- Pre-Estimation: OLS vs. Robust
- 5 Estimation Results
 - Estimation Results
 - Technological Index
- Problems (and suggestions?)

Estimation Results

Variables/Models	1	2	3
GDP	0.822ª	0.816 ^a	0.811 ^a
POP14	0.134ª	0.1313ª	0.127ª
EMV	0.016 ^b	0.0171 ^b	0.170°
UP	-0.256^{b}	-0.236^{b}	-0.233^{b}
ALCOOL	0.05ª	0.053ª	0.051 ^a
SMOK	0.001	0.012	0.011
OUTP	-0.051^{a}	-0.053^{a}	-0.052^{a}
IM	-0.096^{a}	-0.098 ^a	-0.096^{a}
LEX		0.164	0.185
PHARM	0.015 ^c	0.014 ^c	0.0143 ^c
GOV	0.647ª	0.6415ª	0.642 ^a
GOOD			0.012
EMPLY	-0.012^{b}	-0.012^{b}	-0.014^{b}
INDEX	0.405 ^a	0.418 ^a	0.427 ^a
INDEXSQ	-0.534^{a}	-0.518 ^a	-0.522^{a}
Constant	-0.544	-1.28	-1.4
R^2	?	?	?
F-statistic	1973.88ª	1877.80ª	1746.26°

Technological Index

Technological Index

Technological Index

- Motivation
 - Technological Innovation in Healthcare
 - Multiple Imputation
- "Filling" the Database: Multiple Imputation
- The Technological Index: Factor Analysis
 - The Technological Index
 - Factor Analysis
- Pre-Estimation: OLS vs. Robust
- Estimation Results
 - Estimation Results
 - Technological Index
- 6 Problems (and suggestions?)

Problems

Using Multiple Imputation significantly limits the available tools to analyze results, since it is a recent package (available from STATA 11)

The use of robust regression exponentially aggravated this problem Serious problems during this research:

- Factorial analysis
- Outlier detection
- Hausman Test (robust regression)
- R²

Problems (and suggestions?)

Factor Analysis and Outlier Detection are not available after MI

- Solution: imputing 150 (or more) and taking the average
 - Working with asymptotically imputed variables
 - Underestimate the uncertainty of parameter estimation in the missing data case

Hausman test for robust regression

• For our knowledge, a code has not yet been developed

The R^2 case

- With *rreg* command, the R^2 given by STATA doesn't correspond to the true value
 - rregfit command is used instead
- With multiple imputation (even with just a single imputation, through the mi xeq command), the rregfit can't access to some particular data (?) and doesn't work

	150 lmp.	MI
$e(R^2)$.9984	.9984
rregfit	.8167	

Motivation
"Filling" the Database: Multiple Imputation
The Technological Index: Factor Analysis
Pre-Estimation: OLS vs. Robust
Estimation Results
Problems (and suggestions?)

The End

Thank you for your attention!