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Technological Innovation in Healthcare

Main source of development
Increases quality, safety, timeliness and efficiency of healthcare

services
There is not a consensus concerning the potential benefits and

costs savings
@ New technologies are more expensive

@ Their introduction can even increase the type and the number of treated
patients
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Technological Innovation in Healthcare

Newhouse (1992), for example, tried to measure the role of
technological innovation in health expenditure growth

@ Residual approach

This paper builds a technological index and tries to measure technological
innovation directly

@ This index requires technological health data from the 1980s

o Problem:Missing Data
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Multiple Imputation

Existence of missing values
@ Recurring problem in any real investigation
@ Can compromise results

o Current software assume complete database

@ Exclude, from the analysis, observations with missing values
(Listwise Deletion)

The solution: Multiple Imputation

@ |t sees the missing values as an integrate part of the database and
iteratively imputes them with values

@ It creates N > 2 new databases
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Multiple Imputation
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The Technological Index

In order to measure healthcare technology, this paper had to create
a technological index

@ Quasi inexistence of quantitative data able to translate health
technological level

@ Main reference: TAI from the UN
16 variables

@ Machines

@ Procedures

The weights were determined by factor analysis
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Factor Analysis

Factor analysis groups together indicators that are collinear to form
a composite indicator capable of capturing as much of common
information of those indicators as possible

Process:

@ First step: Through Principal-component factor, a matrix of
factor loadings is created
o factor varlist [if] [in] [weight] [, method options |
@ Second step:Rotate the matrix of factor loadings
e rotate
@ Last step: Construction of the weights from the matrix of
factor loadings after rotation and squaring it
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Pre-Estimation: OLS vs. Robust

There was a previous suspicion of outliers and heterocedasticity
within the data

If confirmed, Robust regression is more appropriate to these cases
To our knowledge, in STATA there is not a "Hausman test” in
order to choose Robust over OLS
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A simple algorithm

Simple algorithm

http://www.ats.ucla.edu/stat/stata/dae/rreg.htm

o First step: OLS post-estimation diagnosis, focused on outliers

o Ivr2plot
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A simple algorithm

@ Second step: Analyze the observations’ weights attributed by
Robust Regression
o The more cases in the robust regression that have a weight
close to one, the closer the results of the OLS and robust
regressions
@ rreg depvar [indepvars|, gen(weight)
o list weight
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Variables/Models 1 2 3
GDP 0.822° 0.816° 0.811°
POP14 0.134* | 0.1313° | 0.127°
EMV 0.016° | 0.0171° | 0.170°
up —0.256° | —0.236° | —0.233"
ALCOOL 0.05? 0.0537 0.0517
SMOK 0.001 0.012 0.011
OouTP —0.051° | —0.053° | —0.052°
M —0.096° | —0.098° | —0.096°
LEX 0.164 0.185
PHARM 0.015¢ 0.014° | 0.0143°
GOV 0.647° | 0.6415° | 0.642°
GOOD 0.012
EMPLY —0.012° | —0.012° | —0.014®
INDEX 0.405° 0.418° 0.427°
INDEXSQ —0.5347 | —0.5187 | —0.522°
Constant -0.544 -1.28 -1.4
R? ? ? ?
F-statistic 1973.88 | 1877.80° | 1746.26°
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Problems

Using Multiple Imputation significantly limits the available tools to
analyze results, since it is a recent package (available from STATA
11)
The use of robust regression exponentially aggravated this problem
Serious problems during this research:

@ Factorial analysis

@ Outlier detection

@ Hausman Test (robust regression)

° R?
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Problems (and suggestions?)

Factor Analysis and Qutlier Detection are not available after Ml
@ Solution: imputing 150 (or more) and taking the average

o Working with asymptotically imputed variables
o Underestimate the uncertainty of parameter estimation in the
missing data case

Hausman test for robust regression

@ For our knowledge, a code has not yet been developed
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The R? case
@ With rreg command, the R? given by STATA doesn’t
correspond to the true value
o rregfit command is used instead

o With multiple imputation (even with just a single imputation,
through the mi xeq command), the rregfit can't access to
some particular data (?) and doesn't work

150 Imp. Ml
e(R?) .9984 .9984
rregfit .8167
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Thank you for your attention!
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