# THE CUMULATIVE DISADVANTAGE OF UNEMPLOYMENT

# Irma Mooi-Reci

University of Melbourne

# Acknowledgement

## **FUNDING**

Australian Research Council Discovery Project grant (#DP160101063)

## **COLLABORATORS**

- Anna Manzoni (North Carolina State University)
- Ulrich Kohler

# Motivation: unemployment scarring

Research question: how quick do workers' careers recover from a spell of unemployment?

- Common approaches:
  - Survival models: focus on single transitions (i.e., from unemployment to employment) or competing risk outcomes;
  - Sequence analytic approaches describe the sequence of postunemployment transitions;

## Motivation

- How to quantify recovery in terms of career quality?
- Binary sequences:
  - Successes (S) vs Failures (F)

Career quality measure: The sum of the position indices of the S observations quantifies the quality level: the more S-observations and/or the more recent these are, the bigger the sum will be.

## Requirements for a new quality measure

- a) has a fixed range of [0,1];
- b) increases when the number of successes increases;
- c) decreases when the number of failures increases;
- d) increases when the number of successes is more recent;
- e) accounts for the occurrence of successes by means of a weight which captures the fraction of successes relative to the total sequence;

# Implementation: Quality Measure

 A sequence is successful when a desirable quality/attribute frequently appears towards the end of a sequence

|        |      | $\Upsilon^w(x)$ |     |      |      | $\Upsilon^w(x)$ |     |
|--------|------|-----------------|-----|------|------|-----------------|-----|
| x      | w=.5 | w=1             | w=2 | x    | w=.5 | <i>w</i> =1     | w=2 |
| FFFSSS | .62  | .71             | .85 | SSSS | 1.0  | 1.0             | 1.0 |
| FFSFSS | .59  | .67             | .77 | SFSS | .77  | .80             | .87 |
| FSFFSS | .56  | .62             | .71 | SSFS | .72  | .70             | .70 |
| SFFFSS | .53  | .57             | .68 | SSSF | .67  | .60             | .47 |
| SFFSFS | .50  | .52             | .58 | FSSF | .51  | .50             | .43 |
| SFSFFS | .48  | .48             | .51 | SFSF | .44  | .40             | .33 |
| SSFFFS | .45  | .43             | .45 | SSFF | .39  | .30             | .17 |
| SSFFSF | .43  | .38             | .33 | FSFF | .23  | .20             | .13 |
| SSFSFF | .41  | .33             | .23 | SFFF | .16  | .10             | .03 |
| SSSFFF | .38  | .29             | .15 | FFFF | .00  | .00             | .00 |

### **Implementation: Quality Measure**

 $x = S^4 F^4 S^6 F^2 S^8 F^1 S^{25}$ 



The effect of a run of failures depends on its length: the longer the run, the more severe the effect.

The bigger the parameter *w*, the more severe is the effect of failures, but recovery from the failures due to subsequent successes is also faster for bigger *w* 

\* Make data ready for sequence analysis
 bys pid (wave): gen order=\_n

```
* sq-set the data
    sqset lfs pid order
    forvalues x = 1/13 {
    egen s`x' = sqsuccess(1), w(0.5) subsequence(1,`x')
    }
```

\* Create a single success measure

```
gen s_at_t=.
forvalues x=1/13 {
replace s_at_t=s`x' if order==`x'
}
```

# **Labour Force Status: N** = Not in the labour force; **EPT** = Employed Part-Time; **EFT** = Employed Full-Time; **U** = Unemployed;

| lfs | pid    | order |
|-----|--------|-------|
| N   | 100001 | 1     |
| EPT | 100001 | 2     |
| EPT | 100001 | 3     |
| EPT | 100001 | 4     |
| EPT | 100002 | 1     |
| EPT | 100002 | 2     |
| EPT | 100002 | 3     |
| EPT | 100002 | 4     |
| EPT | 100003 | 1     |
| EPT | 100003 | 2     |
| EPT | 100003 | 3     |
| EFT | 100003 | 4     |
| EFT | 100003 | 5     |
| U   | 100003 | 6     |
| EFT | 100003 | 7     |
| N   | 100003 | 8     |
| EPT | 100003 | 9     |
| EPT | 100003 | 10    |
| N   | 100003 | 11    |
| N   | 100003 | 12    |
| N   | 100003 | 13    |

| lfs | pid    | order | success measure |
|-----|--------|-------|-----------------|
| N   | 100001 | 1     | 0               |
| EPT | 100001 | 2     | .6666667        |
| EPT | 100001 | 3     | .8333333        |
| EPT | 100001 | 4     | .9              |
| EPT | 100002 | 1     | 1               |
| EPT | 100002 | 2     | 1               |
| EPT | 100002 | 3     | 1               |
| EPT | 100002 | 4     | 1               |
| EPT | 100003 | 1     | 1               |
| EPT | 100003 | 2     | 1               |
| EPT | 100003 | 3     | 1               |
| EFT | 100003 | 4     | 1               |
| EFT | 100003 | 5     | 1               |
| U   | 100003 | 6     | .7142857        |
| EFT | 100003 | 7     | .7857143        |
| N   | 100003 | 8     | .6111111        |
| EPT | 100003 | 9     | .6888889        |
| EPT | 100003 | 10    | .7454545        |
| N   | 100003 | 11    | .6212121        |
| N   | 100003 | 12    | .525641         |
| N   | 100003 | 13    | .4505495        |

# Application

## Data & Methods

- Data: German Socio-Economic Panel (GSOEP): 1984-2005
- Sample: Men and women who experienced unemployment sometime over the period 1984 – 2005; (N=152,165 person-year observations; 271 months; 90 trimesters);
- **Approach**: Hybrid Models
  - Career quality is the DV;
  - Decomposing time-varying variables into individual-specific means and deviations from those means

### Post unemployment career quality since first unemployment

Coefficient estimates from hybrid models, by Sex.



#### Post unemployment career quality since first unemployment

Coefficient estimates from hybrid models, Men by Age,



#### Post unemployment career quality since first unemployment

Coefficient estimates from hybrid models, Women by Age,



# Conclusions and limitations

- We find a "recovery" trend that applies to both men and women experiencing first unemployment at different ages.
- Recovery trends are not monotonic, but instead follow a non-linear trend such that the level of career quality first increases, then slows down and eventually stops.
- Women's recovery in career quality is slower than that of their male counterparts.
- Younger men (18-25) and women (before the ages of 35) are more negatively impacted by unemployment compared to those experiencing unemployment at older ages.

# Conclusions and limitations

- Our measure of career success:
  - does not account for other employment characteristics
  - is not suited for career sequences that are more varied and with more than two categories



## Behavior of $\Upsilon^w$ for different w

 $x = S^4 F^4 S^6 F^2 S^8 F^1 S^{25}$ 



The effect of a run of failures depends on its length: the longer the run, the more severe the effect.

The bigger the parameter *w*, the more severe is the effect of failures, but recovery from the failures due to subsequent successes is also faster for bigger *w* 

# **Labour Force Status: N** = Not in the labour force; **EPT** = Employed Part-Time; **EFT** = Employed Full-Time; **U** = Unemployed;

| lfs | pid    | order |
|-----|--------|-------|
| N   | 100001 | 1     |
| EPT | 100001 | 2     |
| EPT | 100001 | 3     |
| EPT | 100001 | 4     |
| EPT | 100002 | 1     |
| EPT | 100002 | 2     |
| EPT | 100002 | 3     |
| EPT | 100002 | 4     |
| EPT | 100003 | 1     |
| EPT | 100003 | 2     |
| EPT | 100003 | 3     |
| EFT | 100003 | 4     |
| EFT | 100003 | 5     |
| U   | 100003 | 6     |
| EFT | 100003 | 7     |
| N   | 100003 | 8     |
| EPT | 100003 | 9     |
| EPT | 100003 | 10    |
| N   | 100003 | 11    |
| N   | 100003 | 12    |
| N   | 100003 | 13    |

| lfs | pid    | order | success measure |
|-----|--------|-------|-----------------|
| N   | 100001 | 1     | 0               |
| EPT | 100001 | 2     | .6666667        |
| EPT | 100001 | 3     | .8333333        |
| EPT | 100001 | 4     | .9              |
| EPT | 100002 | 1     | 1               |
| EPT | 100002 | 2     | 1               |
| EPT | 100002 | 3     | 1               |
| EPT | 100002 | 4     | 1               |
| EPT | 100003 | 1     | 1               |
| EPT | 100003 | 2     | 1               |
| EPT | 100003 | 3     | 1               |
| EFT | 100003 | 4     | 1               |
| EFT | 100003 | 5     | 1               |
| U   | 100003 | 6     | .7142857        |
| EFT | 100003 | 7     | .7857143        |
| N   | 100003 | 8     | .6111111        |
| EPT | 100003 | 9     | .6888889        |
| EPT | 100003 | 10    | .7454545        |
| N   | 100003 | 11    | .6212121        |
| N   | 100003 | 12    | .525641         |
| N   | 100003 | 13    | .4505495        |

# Position weight

 w is a non-negative scaling factor fixing the cost of the non desirable attribute and the rate of recovery from undesirable episodes;

• If 
$$W = 0$$
,  $\Upsilon^0(x^n) = \frac{f(S)}{n}$ 

= the fraction of successes – regardless of their position in a sequence;

• If 
$$w = 1$$
,  $\Upsilon^1(x^n) = \frac{\sum_i p_i}{\sum_i i} = \frac{\sum_i p_i}{n(n+1)/2}$