DISCRETIZ: Command to Convert a Continuous Instrument into a Dummy Variable for Instrumental Variable Estimation

Federico Curci¹, Sébastien Fontenay² & Federico Masera³

¹Colegio Universitario de Estudios Financieros ²Universite Catolique de Louvain ³University of New South Wales

Oceania Stata Meeting, Parramatta - Aug. 19-20, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

DISCRETIZ: Command to Convert a Continuous Instrument into a Dummy Variable for Instrumental Variable Estimation

Table of Contents

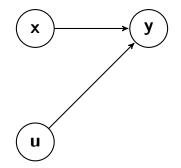
2 discretiz command

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

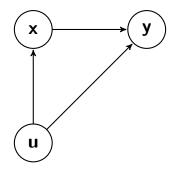
DISCRETIZ: Command to Convert a Continuous Instrument into a Dummy Variable for Instrumental Variable Estimation

- Motivations

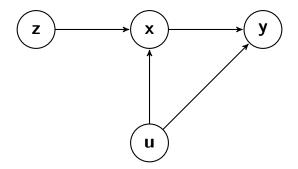
Table of Contents



2 discretiz command


▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Simple regression model assumes X is uncorrelated with the errors U



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If there is an association between X and U: **endogeneity bias** \rightarrow omitted variable, measurement error or simultaneity

Instrumental Variable (IV): instrument Z excluded from outcome equation (second stage), but determinant of endogenous X (first stage)

Researchers often have no *a priori* knowledge or theoretical understanding regarding the relation between Z and X which can lead to **model misspecification**

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Researchers often have no *a priori* knowledge or theoretical understanding regarding the relation between Z and X which can lead to **model misspecification**

If the model is in fact non-linear, fitting a linear model for the first stage could lead to a problem of **weak instrument**

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Researchers often have no *a priori* knowledge or theoretical understanding regarding the relation between Z and X which can lead to **model misspecification**

If the model is in fact non-linear, fitting a linear model for the first stage could lead to a problem of **weak instrument**

Solution proposed by Angrist & Pischke (2009) to convert continuous Z into binary instrument which provides **parsimonious non-parametric model** for the underlying first stage relation

Researchers often have no *a priori* knowledge or theoretical understanding regarding the relation between Z and X which can lead to **model misspecification**

If the model is in fact non-linear, fitting a linear model for the first stage could lead to a problem of **weak instrument**

Solution proposed by Angrist & Pischke (2009) to convert continuous Z into binary instrument which provides **parsimonious non-parametric model** for the underlying first stage relation

Unfortunately, construction of binary instrument **often appears to be arbitrary**, which may raise concerns about the robustness of the second stage results

DISCRETIZ: Command to Convert a Continuous Instrument into a Dummy Variable for Instrumental Variable Estimation

discretiz command

Table of Contents

2 discretiz command

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ ⊇ ○ ○ ○ ○

discretiz command

discretiz command

The discretiz command offers a **data-driven procedure** to build discrete instruments \rightarrow boundaries chosen to maximize F-statistic in first stage

Main advantages:

- Minimizes weak instrument problem that can arise in case of incorrect functional specification in the first stage
- 2 Transparent procedure that does not depend on arbitrary decisions made by the researcher

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

discretiz command

First stage estimation

discretiz contvarname, endogenous(varname)
range(min/max) interval(min(step)max)

contvarname = continuous instrument to be discretized (integer because loops do not handle well decimals)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

endogenous (*varname*) = endogenous variable

range(min/max) = minimum/maximum values of range

interval(min(step)max) = minimum/maximum width of interval

discretiz command

Second stage estimation

discretiz contvarname, endogenous(varname)
range(min/max) interval(min(step)max)
second depvar(varname)

One needs to specify also second and the name of the dependent variable with depvar(*varname*)

Estimation performed using the command ivregress with the two-stage least squares (2sls) estimator

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Available options

exogenous(<i>varlist</i>)	exogenous variable(s) used in first and second stage
<pre>interact(varname)</pre>	interaction with discretized instrument
xt(estimator)	panel-data estimators available with the commands xtreg and xtivreg
vce(<i>vcetype</i>)	for robust or cluster standard errors
print	displays values contained in matrix 'results'
save	saves file with variables stored in matrix 'results' $+$ 95% Cl
graph(string)	graph coefficient estimates (coef) or F-statistics (ftstat)

- Illustration

Table of Contents

2 discretiz command

- Understand if violent crime in city centers affects the spread of cities in the US (movement of people from city centers to suburbs)
- Idea for instrument:
 - Lead heavy metal that in case of poisoning generates violent behavior
 - People are exposed to lead through car emissions
 - Most common method of contact: lead mixed with soil dust
 - Lead is less dangerous when mixed with neutral pH soil
- Time variation: After the end of WW2 lead poisoning increase dramatically. Decreased after 1972 because of lead use regulation
- Cross-sectional variation: pH of the soil of different cities

Chemical theory predicts that during the high lead use years cities with neutral soil (around the 6.5-7.5 pH) should have less of an increase in violent crime.

After first stage estimation, the matrix 'results' stores: Instruments' boundaries, F-statistic, parameter estimate of discrete instrument and standard error

. discretiz ph10, range(65/80) interval(5(1)10) endogenous(totnpcc_cc_offenses_vc)

> exogenous(i.year) interact(tetra_corr) xt(fe) graph(fstat) print

results[51,5]

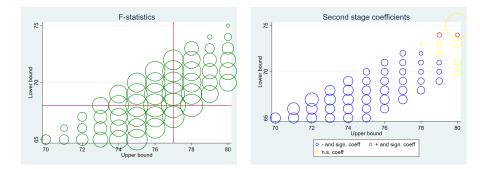
		1b	ub	fstat	beta	se	
	r1	68	77	262.16462	00527984	.00032609	
	r2	68	76	234.77293	00515082	.00033617	
	r3	69	77	227.45227	00527996	.00035009	
	r4	68	78	223.39974	00461751	.00030893	
	r5	68	75	222.05374	00523717	.00035145	
	r6	67	77	207.42131	00451308	.00031336	
	r7	69	76	201.19534	0051533	.00036331	
	r8	70	77	199.14216	00526872	.00037336	
	r9	71	77	199.14216	00526872	.00037336	
	r10	65	75	191.22497	00381797	.0002761	
	r11	69	75	189.88088	00529106	.00038397	
	r12	69	78	188.03554	00449492	.00032779	
	r13	67	76	182.06497	00434235	.00032182	
	r14	66	76	176.64343	00396422	.00029827	
	r15	72	77	175.57532	00550638	.00041556	
	r16	71	76	173.76344	00514243	.00039011	
	r17	70	76	173.76344	00514243	.00039011	
	r18	68	74	173.53996	00487553	.0003701	
	r19	67	75	168.13245	00433725	.00033449	
	r20	70	75	163.5051	00533389	.00041714	

- Illustration

We can use the new discrete instrument with boundaries 6.8 and 7.7 that has been found to maximize the F-stat in the first stage

. gen good_soil = (ph1_plc_wtm_wtm_0_r>=6.8 & ph1_plc_wtm_wtm_0_r<=7.7)										
. xtivreg perc_cc i.year (standardized_vc = c.good_soil#c.tetra_corr), fe										
Fixed-effects (wi		ression		umber of		9,481				
Group variable: f	ipsplace_00		N	umber of	groups =	305				
R-sq:			0	Obs per group:						
within =	•				min =	8				
between = 0.				avg =	31.1					
overall = 0.	.0795				max =	32				
			W	ald chi2(32) =	633103.54				
corr(u_i, Xb) =	0.0259		P	rob > chi	.2 =	0.0000				
perc_cc	Coef.	Std. Err.	z	P> z	[95% Con	f. Interval]				
standardized_vc	0717297	.00594	-12.08	0.000	0833718	0600876				
year										
1961	.0017654	.0040017	0.44	0.659	0060779	.0096087				
1991	.0768294	.0113749	6.75	0.000	.0545349	.0991238				
_cons	.4348947	.0031643	137.44	0.000	.4286929	.4410965				
sigma_u	.18215015									
sigma_e	.04846004									
rho	.93389896	(fraction	of varia	nce due t	o u_i)					
F test that all	u_i=0: F	(304,9144) =	435.9	1	Prob > F	= 0.0000				

Instrumented: standardized_vc


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

After second stage estimation, the matrix 'results' stores: Instruments' boundaries, parameter estimate of endogenous variable and standard error

. discretiz ph10, range(65/80) interval(5(1)10) endogenous(standardized_vc) second > depvar(perc_cc) exogenous(i.year) interact(tetra_corr) xt(fe) graph(coef) print results[51.4] lb ub beta se 70 -.04097976.00580547 77 r2 71 -.04097976 .00580547 77 r3 69 77 -.05647729 .00583521 r4 -.07172966 68 77 .00593996 r5 -.05994759 .00599139 78 r6 69 78 -.042527.00599988 r7 72 -.03381604 .00603609 77 r8 71 -.02463927.00619798 78 r9 70 -.02463927 .00619798 78 76 -.04882763 .00641164 r10 71 r11 70 -.04882763.00641164 76 -.04405828 .00647297 r12 70 75 r13 69 76 -.06484251.00648862 r14 69 75 -.06214748 .00657464 r15 68 76 -.08023395 .00660769 r16 68 75 -.07907977 .00674165 r17 72 78 -.01415127 .00674563 r18 65 .00684718 75 -.07021066 r19 71 80 -.01309482 .00686332 r20 70 80 -.01309482 .00686332

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Graphics allow users to check the sensitivity of the results to the choice of instruments

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三