Technology Forecasting using Data Envelopment Analysis in Stata

Aug 19–20, 2019 2019 Oceania Stata Conference

Choonjoo Lee*, Jinwoo Lee** *Korea National Defense University, sarang90@kndu.ac.kr **Auckland University of Technology, daniel.jnw.lee@gmail.com

CONTENTS

Technology Forecasting

"A prediction of the future characteristics of useful machines, procedures, or techniques" (Martino, 1982, 1993; Inman, 2004)

"Prediction for Invention, Innovation or Technology Spread" (Schon, 1966)

"Probabilistic Assessment of Future Technology Transfer Processes" (Jantsch, 1967)

"Quantitative perspectives on the degree of change in technical characteristics, technical attributes, and timing associated with the use of design, production, machinery, materials and processes according to specific logic systems" (Bright, 1978)

Data Envelopment Analysis(DEA)

"This is a method for adjusting data to prescribed theoretical requirements such as optimal production surfaces, etc., prior to undertaking various statistical tests for purposes of public policy analysis." (Charnes A., 1978; Rhode, 1978).

DEA Efficiency

Performance(Efficiency, Productivity) = $\frac{\text{Outputs}}{\text{Inputs}}$

Assumption and Interpretation of DEA Efficiency Models

- Assumptions to analyze the black box
 - Economic Behaviors: No input, no output!
 - (Free) Disposability
 - Convexity
 - Frontier Search: Piece-wise Linear Method
 - Scale Economy
 - Orientation: Input-based or Output-based Analysis
- Interpretation of DEA Results
 - X-inefficiency
 - Rational Choice of Input-Output Mixes
 - Performance

...

 DEA model development satisfying the assumptions of Disposability, Convexity, Scale Economy, and Frontier estimation.

 DEA Production Possibility Set can be obtained from {Free Disposability, Convex, Constant Returns to Scale, piece-wise linear frontier}

$$P(x, y | CRS) = \{(x, y) | y_m \le \sum_{j=1}^{J} z^j y_m \quad (m = 1, ..., M)$$
$$x_n \ge \sum_{j=1}^{J} z^j x_n^j \quad (n = 1, ..., N)$$
$$z^j \ge 0 \quad (j = 1, ..., J)\}$$

Define the Input-oriented-DEA Efficiency score as the Input ratio of observation to ideal input required to produce the same output.

□ Input-based CRS DEA

$$\begin{split} \theta^{*} &= Min \; \theta_{k} \\ s.t. \\ y_{mk} &\leq \sum_{j=1}^{J} z_{j} y_{mj} \quad (m = 1, ..., M) \\ \theta_{k} x_{nk} &\geq \sum_{j=1}^{J} z_{j} x_{nj} \quad (n = 1, ..., N) \\ z_{j} &\geq 0 \quad (j = 1, ..., J) \end{split}$$

□ Input-based Variable-returns-to-scale(VRS) DEA

$$\theta^* = Min \ \theta_k$$

s.t.

$$y_{mk} \leq \sum_{j=1}^{J} z_j y_{mj} \quad (m = 1, ..., M)$$

$$\theta_k x_{nk} \geq \sum_{j=1}^{J} z_j x_{nj} \quad (n = 1, ..., N)$$

$$\sum_{j=1}^{J} z_j = 1$$

$$z_j \geq 0 \quad (j = 1, ..., J)$$

□ Basic DEA Models: CCR, BCC

Orientation	Constant Return to Scale(CCR)	Variable Returns to Scale(BCC)
Input Oriented	Min θ s.t. θxA - Xλ ≥ 0 Yλ -yA ≥ 0 λ ≥ 0	Min θ s.t. $\theta x A - X\lambda \ge 0$ $Y\lambda - yA \ge 0$ $e\lambda = 1$ $\lambda \ge 0$
Output Oriented	Max η s.t. xA - Xμ ≥ 0 ηγA -yμ ≤ 0 μ ≥ 0	Max η s.t. xA - X $\mu \ge 0$ $\eta yA - y\mu \le 0$ $e\lambda=1$ $\mu \ge 0$

- ❑ Characteristics of DEA
 - No assumption about Input-Output Function
 - No limits to the number of inputs and outputs
 - Not required to weight restrictions
 - Provide reference sets for benchmarking
 - Provide useful information for input-output mix decision
 - n times computations for n DMUs

User Written Stata/DEA Description

- Various DEA models (CCR, BCC, SBM, FDH, Super-efficiency, Additive, Malmquist Index, etc.)
- The data flow in the Stata/DEA program
 - the input and output variables data sets required
 - the DEA options define the model
 - the "Stata/DEA" program consists of "basic" and "lp" subroutine
 - the result data sets available for print or further analysis
- User written programs are available from https://sourceforge.net/p/deas/code/HEAD/tree/trunk/
- Also, we can calculate the efficiency score applying Stata 16 new Mata class "LinerProgram()".

• Diagram of Data flow in Stata/DEA program

□ Technology Forecasting using Data Envelopment Analysis(TFDEA)

- Technology Forecasting Process
 - ✓ Step 1 : Measure Technology Rate-of-Change (ROC) using DEA efficiency score.
 - ✓ Step 2 : Predict the emergence time of new technology (product)
 by using measured technology ROC

* TFDEA model based on Anderson et al. (2001), Inman et al.(2006)

- Step 1: Measure Technology Rate-of-Change (ROC) using DEA efficiency score
 - ✓ Obtain Production possibility set according to time of release(t_k)
 - ✓ Calculate the specified DEA model Efficiency Scores($\phi_i^{t_f}$)
 - ✓ Identify Decision Making Unit(DMU) that are initially identified as the efficient DMU(called State of Art, SOA) but obsolete over time
 - ✓ Measure the above said DMUs' technology rate of changes($\gamma_i^{t_f}$) and annual average technology rate of change($\bar{\gamma}$)

- ✤ Algorithm of Technology Rate of Change measure
 - 1) The targets to be analyzed are selected from all observations (DMUs), and the production possibility set is formed by increasing the DMUs according to the release time from the initial release(t_k) to the prediction baseline(t_f).
 - (2) Calculate the efficiency score($\phi_i^{t_f}$) of the DMU using the specified DEA model using the constructed production possibility set.
 - ③ Based on the efficiency calculated based on the current time(t_f), the effective time(t_{eff}) to be placed in the production frontier for each DMU is calculated using the following equation.

$$t_{eff} = \sum_{j=1}^{n} \lambda_j t_j / \sum_{j=1}^{n} \lambda_j \ \forall j = 1, \dots, n; \ (0 \le \lambda_j \le 1)$$

- ✤ Algorithm of Technology Rate of Change measure
 - (4) Among the DMUs, the DMU, which was efficient at the time of its first release ($\emptyset_i^{t_k} \le 1$) but was changed inefficient over time ($\emptyset_i^{t_f} > 1$), is selected and the rate of change of technology($\gamma_i^{t_f}$) is calculated using the following equation.

$$\gamma_i^{t_f} = (\emptyset_i^{t_f})^{1/(t_{eff}-t_k)} \ \forall i = 1, ..., n$$

(5) The annual technology change rate is calculated by arithmetically calculating the technology change rate($\bar{\gamma}$) of each DMU.

• Step 2: Predict the emergence time of new technology

(product) by using measured technology ROC

- ✓ Forecast of technology development trend based on current technology level
 - Measure the super-efficiency (\emptyset_i^{SE,t_f}) of the target DMU using DEA and the super-efficiency model
 - Prediction of technology emergence by applying effective time (t_{eff}) and average rate of change of technology $(\bar{\gamma})$ to nonlinear growth function (exponential function)

※ DEA Super-efficiency model

- Measure efficiency based on production changes obtained by constructing a set of production possibilities, excluding specific DMUs to be analyzed.
- If the DMU of interest is placed in a production frontier, the super-

efficiency model score is measured to be greater than $1(\phi_i^{SE,t_f} > 1)$.

✓ Prediction of product emergence

- Product emergence time($t_{i,expected}$) is defined as the ratio of super-efficiency(\emptyset_i^{SE,t_f}) and average technology change rate($\overline{\gamma}$) based on the effective time(t_{eff}).

 $t_{i,expected} = t_{eff} + \ln\left(1/\emptyset_i^{SE,t_f}\right) / \ln(\bar{\gamma})$

- Effective time means position at current production frontier
- The ratio of super-efficiency and rate of technological change refers to the time it takes for a production change to reach its technical level

 \times super-efficiency : A measure of how far the product is from its current(t_f) production frontier as a function of production distance \times average technology change rate : Measures the rate of increase of technology over the unit time based on product efficiency

- Illustration of Product emergence time($t_{i,expected}$)

Source: Jung & Lee(2014)

- Illustration of technology rate of change

No.	DMU	FFD()				Nb.	DMU	FFD()				
1	P-80/F-80A	1944	1.296	1977.84	1.007	1	Mig-9	1946	1.316	1977.00	1.007	
2	FH-1	1945	1.315	1972.14	1.010	2	Yak-15	1946	1.326	1986.80	1.009	
3	F-84B	1946	1.282	1987.00	1.009	3	MiG-9M	1947	1.270	1981.84	1.006	
4	FJ-1	1946	1.323	1964.28	1.007	4	Mig-15	1947	1.239	1986.28	1.006	
5	F6U	1946	1.227	1973.05	1.011	5	Yak-17	1947	1.394	1986.03	1.008	
6	F9F-2	1947	1.262	1969.76	1.006	6	Yak-23	1947	1.231	1977.00	1.007	
7	F-86A	1947	1.233	1982.39	1.009	7	La-15	1948	1.268	1977.00	1.008	
8	F2H-1	1947	1.227	1977.28	1.007	8	Mig-15bis	1949	1.205	1977.00	1.006	
9	F-80B	1947	1.291	1987.00	1.007	9	Mig-17	1950	1.203	1986.75	1.005	
10	F-84C	1947	1.306	1981.35	1.008	10	Mig-17P	1952	1.225	1975.00	1.006	
51	F/A-18A	1978	1.021	1987.00	1.009	34	Su-27S	1977	1.006	1987.65	1.001	
52	F-15C	1979	1.006	1977.51	1.002	35	Su-33	1987	1.012	1987.22	1.009	
Average technology rate of change() 1					1.0052	A	Average technology rate of change()					

<A country made Aircraft>

<B country made Aircraft>

* FFD (First Flight Date)

Source: Jung & Lee(2014)

- Illustration of TFDEA results

DMU	FFD()			Country
F-14D	1991	1.002	1984.55	
F/A-18E	1995	1.000	1987.00	٨
F-22A	1997	0.900	1987.00	A
F-35A	2007	0.900	1987.00	
T-50 PAK FA	2009	0.900	1988.00	В

- ✓ From the previous page, A country (1.0052) shows higher rate of technological change than B country (1.0049).
 - But, notice that fighters with super-efficiencies less than 1 are more advanced.
 - Accurate measurement limits if improvements exist that are not included in the selected parameters.

★ Motivation to choose the data: replication and extension of data set used in Shagun Srivastava & Madhvendra Misra(2016).

26

Data Gathering

Step 1: Gather PHP links leading to each companies.

<div class="brandmenu-v2·light·l-box·clearfix">

<i class="head-icon icon-search-right"></i>
Phone finder

<u>>

< href="samsung-phones-9.php">Samsung/\i>li>a href="apple-phones-48.php">Apple/\i>li>a href="huawei-phones-58.php">Huawei/\i>li>a href="huawei/\i>li>a href="samsung-phones-9.php">Samsung/\i>li>a href="apple-phones-48.php">Apple/\i>li>a href="huawei-phones-58.php">Huawei/\i>li>a href="huawei/\i>li>a href="

Data Gathering

Step 2: Obtain PHP links to iterate through all the pages regarding company's phones. <div class="review-nav pullNeg col pushT10 ">

<div class="nav-pages">

Pages:

<strong312 3 3 3 3 3

<div class="col col-1-5 pages-next-prev float-right">

>>/a> </div>

</div>

Data Gathering

Step 3: Once accessed the page, then gather specs for each phone on the page.

Wetwork
Technology
class="nfo"×a href="#" class="link-network-detail collapse" data-spec="nettech"×HSPA / LTE
2G bands
N/A
/tr×tr class="tr-toggle">
3G bands
HSDPA 900 / 2100 - Global
HSDPA 850 / 1900 - SM-T927A
4G bands
LTE band 1(2100), 3(1800), 5(850), 7(2600), 8(900), 20(800) - Global
(1)
<r class="tr-toggle" data-spec-optional=""></r>
<10 Class="111">//10>
<pre> </pre> <pre></pre>
() A start the dead the
(C Class="tr-toggle>
 Class="titl ×a infer="glossary.pnps/tern=sg>speeck/a×/to> and abas="listil data asses"[isotal].product IT_datab
 Class= min calla-spec= speed >msrk, Lic-xy to>
(1)>
etr class-lite-toonlalls
kit class- ti-lugyte z ziti class-"titi"va hraf-"nincearu nhn?itarm-nnre"/C005/10/1/1/
zin classe cici na inicie glossali jelinovi ceniego s zanonany un vice zin classe "infa" data-saare"inarstavt". Vaezdras
dtp
<pre></pre>
<"d class="ttl":xa href="olossary.oho3?term=edoe">E0GE:x//d>
class="nfo" data-spec="edue">Yes

NETWORK	Technology	GSM / CDMA / HSPA / EVDO / LTE / 5G	EXPAND
LAUNCH	Announced	2019, August	
	Status	Coming soon. Exp. release 2019, August 23	
BODY	Dimensions	162.3 x 77.2 x 7.9 mm (6.39 x 3.04 x 0.31 in)	
5051	Weight	198 g (6.98 oz)	
	Build	Front/back glass (Gorilla Glass), aluminum frame	
	SIM	Nano-SIM	
		Samsung Pay (Visa, MasterCard certified)	
		IP68 dust/water proof (up to 1.5m for 30 mins)	
		Stylus (Bluetooth integration, accelerometer, gyro)	
DISPLAY	Туре	Dynamic AMOLED capacitive touchscreen, 16M colors	
DIGITERI	Size	6.8 inches, 114.0 cm ² (~91.0% screen-to-body ratio)	
	Resolution	1440 x 3040 pixels, 19:9 ratio (~498 ppi density)	
	Protection	Corning Gorilla Glass	
		HDR10+	
		Always-on display	
PLATFORM	OS	Android 9.0 (Pie); One UI	
1 Billional	Chipset	Exynos 9825 (7 nm) - EMEA/LATAM	
		Qualcomm SDM855 Snapdragon 855 (7 nm) - USA/China	
	CPU	Octa-core (2x2.73 GHz Mongoose M4 & 2x2.4 GHz Cortex-A75 & 4x1.9 Cortex-A55) - EMEA/LATAM	GHz
		Octa-core (1x2.84 GHz Kryo 485 & 3x2.42 GHz Kryo 485 & 4x1.78 GHz - USA/China	Kryo 489
	GPU	Mali-G76 MP12 - EMEA/LATAM	
		Adreno 640 - USA/China	
MEMORY	Card slot	microSD, up to 1 TB (dedicated slot)	
memorri	Internal	256/512GB, 12GB RAM	
MAIN	Ouad	12 MP. f/1.5-2.4, 27mm (wide), 1/2.55", 1.4um, Dual Pixel PDAF, Dual OI	s
CAMERA		12 MP, f/2.1, 52mm (telephoto), 1/3.6", 1.0µm, PDAF, Dual OIS, 2x optica	l zoom
		16 MP, f/2.2, 12mm (ultrawide), 1.0µm	
		TOF 3D VGA camera	
	Features	LED flash, auto-HDR, panorama	
	Video	2160p@30/60fps, 1080p@30/60/240fps, 720p@960fps, HDR10+, dual-v stereo sound rec., gyro-EIS & OIS	ideo rec
SELFIE	Single	10 MP, f/2.2, 26mm (wide), 1.22µm, Dual Pixel PDAF	
CAMERA	Features	Dual video call, Auto-HDR	
	Video	2160p@30fps	
SULIND	Loudspeaker	Yes, with stereo speakers	
30010	3.5mm jack	No	
		32-bit/384kHz audio 20	
		Active noise cancellation with dedicated mic	
		Dolby Atmos/AKG sound	

Step 1: Gather links leading to each companies.

from lxml import html,etree import requests import re import pandas as pd import numpy as np import codecs import urllib3 from functools import reduce from socket import timeout import logging from urllib3.exceptions import MaxRetryError import urllib

import os

```
#Target website
page = requests.get('https://www.gsmarena.com')
tree = html.fromstring(page.content)
#specify html div that contains all the links
link to all = tree.xpath("//div['brandmenu-v2 light l-box clearfix']")
link html = tree.findall(".//div[@class='brandmenu-v2 light l-box clearfix']")
#retrieve the html
urllib.request.urlretrieve('https://www.gsmarena.com', "view-source.html")
with open("view-source.html", 'r', errors='ignore') as f:
    content = f.readlines()
#narrow it down to the links that contain phones
content = [x.strip() for x in content]
f = codecs.open("view-source.html", 'r', errors='replace')
for line in content[:]:
    prelink += re.findall('.*?\-.*?\-[0-9]{1,3}.php"',line)
links = []
for line in prelink[:]:
    links += re.findall('=.*?\-.*?\-[0-9]{1,3}.php"',line)
links = [x.strip('="') for x in links]
links = ["https://www.gsmarena.com/"+x for x in links]
links
```

Step 2: Obtain PHP links to iterate through all the pages

Step 2: Obtain PHP links to iterate through all the pages regarding company's phones.

• The pseudo code:

for each company in range(0,len(list_of_companies)): get the links for each page for each page in range(0,len(main_page_num)): get the phones from each page for each phone in range(0,length_phone_links): iterate through and retrieve the specs create a dataframe and concatenate each phones

Step 2's result

1	Category	Netwo	ork Network	Network Ne	etwork	Network	Network	Network	Launch	Launch	Body	Body	Body	Display	Display	Display	Platform	Platform	Platform	Platform	Memory	Memory	Main Can	n Selfie ca	an Selfie car	r Sound	Sound	Comms	Comms Co
2	Sub-Categ	Techn	ιοloε 2G bands	3G bands 4G	6 bands	Speed	GPRS	EDGE	Annound	e Status	Dimensi	o Weight	t SIM	Туре	Size	Resolutio	OS	Chipset	CPU	GPU	Card slot	Internal	Internal	Single	Video	Loudspea	3.5mm jac	WLAN	Bluetooth GF
3	galaxy_vie	HSPA ,	/ LTE N/A	HSDPA 90(LT	E band 1	HSPA, LT	E Yes	Yes	2019, Ap	ri Available.	417.1 × 2	6 2.23 kg	(4. Nano-SI	M IPS LCD c	a 17.3 inche	1080 x 19	2 Android 8	Exynos 78	3 Octa-core	Mali-G71	microSD,	64 GB, 3	G No	5 MP	2160p@3	Yes, with	Yes, Dolby	Wi-Fi 802.	5.0, A2DP, Ye
4	galaxy_s1	GSM /	CDI GSM 850 /	HSDPA 85 LT	r <mark>E (</mark> unsp	HSPA 42.	2 Yes	Yes	2019, Fel	or Available.	162.6 x 7	7. 198 g (6	5.98 Nano-	Dynamic	46.7 inches	5 1440 x 30	4 Android 9	Exynos 98	Octa-core	Mali-G76	No	256/512	GB, 8 GB RA	M		Yes, with	Yes, 32-	Wi-Fi 802.	5.0, A2DP, Ye
5	galaxy_s10	GSM /	CDI GSM 850	HSDPA 85(LT	E band 1	HSPA 42.	2 Yes	Yes	2019, Fel	or Available.	157.6 x 7	4.175 g /	198 Single	Dynamic	/6.4 inches	5 1440 x 30	4 Android 9	Exynos 98	Octa-core	Mali-G76	microSD,	1 TB, 12 C	GB RAM, 12	8/512 GB,	8 GB RAM	Yes, with	Yes, 32-	Wi-Fi 802.	5.0, A2DP, Ye
6	galaxy_s10	GSM /	CDI GSM 850 /	HSDPA 85(LT	E band 1	HSPA 42.	2 Yes	Yes	2019, Fel	or Available.	149.9 x 7	0.157 g (5	5.54 Single	Dynamic	/ 6.1 inches	s 1440 x 30	4 Android 9	Exynos 98	Octa-core	e Mali-G76	í microSD,	128/512	GB, 8 GB RA	AI 10 MP, f	/1.9, 26mm	(Yes, with	Yes, 32-	Wi-Fi 802.	5.0, A2DP, Ye
7	galaxy_s10	GSM /	CDI GSM 850	HSDPA 85 LT	E band 1	HSPA 42.	2 Yes	Yes	2019, Fel	or Available.	142.2 x 6	9.150 g (5	5.25 Single	Dynamic	/5.8 inches	5 1080 x 22	8 Android 9	Exynos 98	Octa-core	Mali-G76	microSD,	256 GB, 8	GB RAM o	r 10 MP, f	/1.9, 26mm	(Yes, with	Yes, 32-	Wi-Fi 802.	5.0, A2DP, Ye
8	galaxy_fol	GSM /	HSF GSM 850	HSDPA 85(LT	r <mark>E (</mark> unsp	HSPA 42.	2 Yes	Yes	2019, Feb	or Coming so	Unfolde	d: 263 g (9	9.28 Nano-SI	M Dynamic	7.3 inches	5 1536 x	Android 9	Qualcom	n Octa-core	Adreno 6	4 No	512 GB, 1	L2 GB RAM			Yes, with	No, 32-	Wi-Fi 802.	5.0, A2DP, Ye
9	galaxy_wa	No cel	llula N/A				No	No	2019, Fel	or Available.	39.5 x 39	.5 25 g (0.	88 No,	Super AN	1.1 inches	5 360 x 360	Tizen-bas	Exynos 91	L Dual-core	2 1.15 GHz	No	4 GB, 768	3 MB RAM			Yes	No	Wi-Fi 802.	4.2, A2DP, Ye
10	galaxy_a2	GSM /	HSF GSM 850	HSDPA 85(LT	FE (unsp	HSPA 42.	2 Yes	Yes	2019, Ap	ri Available.	-	-	Dual SIN	1 (IPS LCD c	a 5.0 inches	s 540 x 960	Android 8	Exynos 78	Octa-core	Mali-T830) microSD,	8/16 GB,	1 GB RAM	5 MP, f/	2.2	Yes	Yes	Wi-Fi 802.	4.2, A2DP, Ye
11	galaxy_m3	GSM /	/ HSF GSM 850 /	HSDPA 85 LT	E band 1	HSPA, LT	E Yes	Yes	2019, Fel	or Available.	159 x 75.	1 174 g (6	5.14 Dual SIN	1 (Super AN	/ 6.4 inches	5 1080 x 23	4 Android 8	Exynos 79	Octa-core	Mali-G71	í microSD,	128 GB, 6	5 GB RAM o	r 16 MP, f	/2.0	Yes	Yes,	Wi-Fi 802.	5.0, A2DP, Ye
12	galaxy_m2	GSM /	/ HSF GSM 850 /	HSDPA 85 LT	E band 1	HSPA 42.	2 Yes	Yes	2019, Jan	u Available.	156.4 x 7	4. 186 g (6	5.56 Dual SIN	1 (PLS TFT c	a 6.3 inches	5 1080 x 23	4 Android 8	Exynos 79	Octa-core	Mali-G71	microSD,	64 GB, 4	GB RAM or	38 MP, f/	2.0, 25mm (/Yes	Yes,	Wi-Fi 802.	5.0, A2DP, Ye
13	galaxy_m:	GSM /	/ HSF GSM 850 /	HSDPA 85 LT	E band 1	HSPA 42.	2 Yes	Yes	2019, Jan	u Available.	155.6 x 7	5.163 g (5	5.75 Dual SIN	1 (PLS TFT c	a 6.22 inche	720 x 152	0 Android 8	Exynos 78	Octa-core	Mali-T830	microSD,	32 GB, 3	GB RAM or	15 MP, f/	2.0, 32mm (Yes	Yes, Activ	Wi-Fi 802.	4.2, A2DP, Ye
14	galaxy_a8	GSM /	HSF GSM 850	HSDPA 85(LT	ΓE <mark>(</mark> unsp	HSPA, LT	E Yes	Yes	2019, Ap	ri Coming so	165.2 x 7	6	Single S	IN Super AN	/ 6.7 inches	5 1080 x 24	0 Android 9	Qualcom	n Octa-core	Adreno 6	1No	128 GB, 8	GB RAM			Yes	No,	Yes	Yes Ye
15	galaxy_a7	GSM /	/ HSF GSM 850 /	HSDPA 85 LT	E band 1	HSPA, LT	E Yes	Yes	2019, Ma	r Available.	164.3 x 7	6. 183 g (6	5.4€ Single S	IN Super AN	/ 6.7 inches	5 1080 x 24	0 Android 9	Qualcom	n Octa-core	Adreno 6	1 microSD,	128 GB, 6	5/8 GB RAM	1 32 MP, f	/2.0, 0.8µr	Yes	Yes, Activ	Wi-Fi 802.	5.0, A2DP, Ye
16	galaxy_a6	GSM /	/ HSF GSM 850 /	HSDPA 85 LT	E band 1	HSPA 42.	2 Yes	Yes	2019, Ap	ri Coming so	155.2 x 7	3. 162 g (5	5.71 Single S	IN IPS LCD c	a 6.3 inches	5 1080 x 23	4 Android 9	Qualcom	n Octa-core	Adreno 6	1 microSD,	128 GB, 6	5 GB RAM	16 MP, f	/2.0	Yes	Yes,	Wi-Fi 802.	5.0, A2DP, Ye
17	galaxy_a5	GSM /	/ HSF GSM 850 /	HSDPA 85(LT	E band 1	HSPA, LT	E Yes	Yes	2019, Feb	or Available.	158.5 x 7	4. 166 g (5	5.86 Single S	IN Super AN	6.4 inches	5 1080 x 23	4 Android 9	Exynos 96	5 Octa-core	Mali-G72	microSD,	128 GB, 6	5 GB RAM of	r 25 MP, f	/2.0, 25mm	(Yes	Yes, Activ	Wi-Fi 802.	5.0, A2DP, Ye
18	galaxy_a4	GSM /	HSF GSM 850	HSDPA 85(LT	E band 1	HSPA 42.	2 Yes	Yes	2019, Ma	r Available.	144.4 x 6	9. 140 g (4	1.94 Single S	IN Super AN	1 5.9 inches	5 1080 x 23	4 Android 9	Exynos 78	3 Octa-core	Mali-G71	microSD,	64 GB, 4	GB RAM	25 MP, f	/21080p@3	Yes	Yes, Activ	Wi-Fi 802.	5.0, A2DP, Ye
19	galaxy_a3	GSM /	/ HSF GSM 850 /	HSDPA 85(LT	E band 1	HSPA, LT	E Yes	Yes	2019, Fel	or Available.	158.5 x 7	4. 165 g (5	5.82 Single S	IN Super AN	/ 6.4 inches	5 1080 x 23	4 Android 9	Exynos 79	Octa-core	e Mali-G71	í microSD,	64 GB, 4	GB RAM or	316 MP, f	/21080p@3	Yes	Yes, Activ	Wi-Fi 802.	5.0, A2DP, Ye
20	galaxy_a2	GSM /	/ HSF GSM 850 /	HSDPA 85 LT	FE (unsp	HSPA 42.	2 Yes	Yes	2019, Ap	ri Coming so	147.2 x 6	9	Single S	IN IPS LCD c	a 5.8 inches	5 720 x 156	0 Android 9	Exynos 78	3 Octa-core	e (2x1.6 GH	z microSD,	32 GB, 3	GB RAM	8 MP, f/	2.0	Yes	Yes, Activ	Wi-Fi 802.	4.2, A2DP, Ye
21	galaxy_a2	GSM /	/ HSF GSM 850 /	HSDPA 85 LT	E band 1	HSPA 42.	2 Yes	Yes	2019, Ma	r Available.	158.4 x 7	4. 169 g (5	5.96 Single S	IN Super AN	6.4 inches	5 720 x 156	0 Android 9	Exynos 78	3 Octa-core	e (2x1.6 GH	z microSD,	32 GB, 3	GB RAM	8 MP, f/	2.0	Yes	Yes, Activ	Wi-Fi 802.	5.0, A2DP, Ye
22	galaxy_a1	GSM /	HSF GSM 850	HSDPA 85(LT	E band 1	HSPA 42.	2 Yes	Yes	2019, Fel	or Available.	155.6 x 7	5. 168 g (5	5.9: Single S	IN IPS LCD c	a 6.2 inches	5 720 x 152	0 Android 9	Exynos 78	3 Octa-core	Mali-G71	microSD,	32 GB, 2	GB RAM	5 MP, f/	2.0	Yes	Yes, Activ	Wi-Fi 802.	5.0, A2DP, Ye
23	galaxy_tal	GSM /	HSF GSM 850	HSDPA 85(LT	FE (unsp	HSPA, LT	E Yes	Yes	2019, Fel	or Available.	245 x 160) 400 g (1	L4.1 Nano-SI	M Super AN	/ 10.5 inche	1600 x 25	6 Android 9	Qualcom	n Octa-core	Adreno 6	1 microSD,	128 GB, 6	5 GB RAM o	r 8 MP, f/:	2.(1080p@3	Yes, with	No,	Wi-Fi 802.	5.0, A2DP, Ye
24	galaxy_tal	GSM /	/ HSF GSM 850 /	HSDPA 85 LT	FE (unsp	HSPA, LT	E Yes	Yes	2019, Fel	or Available.	245 x 149) 460 g (1	L.01 Nano-SI	M IPS LCD c	a 10.1 inche	1200 x 19	2 Android 9	Exynos 79	Octa-core	Mali-G71	í microSD,	32 GB, 2	GB RAM	5 MP, f/	2.: 1080p@3	Yes, with	Yes, Dolby	Wi-Fi 802.	5.0, A2DP, Ye
25	galaxy_tal	GSM /	/ HSF GSM 850 /	HSDPA 85(LT	E band 1	HSPA, LT	E Yes	Yes	2019, Ma	r Available.	201.5 × 1	2: 325 g (1	L1.4 Nano-SI	M IPS LCD c	a 8.0 inches	5 1200 x 19	2 Android 9	Exynos 79	Octa-core	Mali-G71	microSD,	32 GB, 3	GB RAM	5 MP, f/	2.: 1080p@3	Yes	Yes	Wi-Fi 802.	5.0, A2DP, Ye
26	galaxy_tał	No cel	llula N/A				No	No	2018, No	v Available.	250.4 x 1	6 525 g (1	1.16 No	IPS LCD c	a 10.1 inche	1200 x 19	2 Android 8	Exynos 78	3 Octa-core	Mali-T830) microSD,	32 GB, 3	GB RAM	2 MP	1080p@3	Yes	Yes	Wi-Fi 802.	4.2, A2DP, Ye
27	galaxy_tal	GSM /	HSF GSM 850	HSDPA 85(LT	E band 1	HSPA, LT	E Yes	Yes	2018, Sep	ot Available.	206.6 x 1	2(358 g (1	L2. (Nano-SI	M IPS LCD c	a 8.0 inches	5 800 x 128	0 Android 8	Qualcom	n Quad-cor	Adreno 3	CmicroSD,	32 GB, 2	GB RAM	2 MP, f/	2.2	Yes	Yes	Wi-Fi 802.	4.2, A2DP Ye
28	galaxy_tal	GSM /	/ HSF GSM 850 /	HSDPA 85 LT	FE (unsp	HSPA 42.	2 Yes	Yes	2018, Au	g Available.	249.3 x 1	6 482g (V	Vi-I Nano-SI	M Super AN	/ 10.5 inche	1600 x 25	6 Android 8	Qualcom	n Octa-core	Adreno 5	4 microSD,	64/256 G	B, 4 GB RAN	N 8 MP	1080p@3	Yes, with	Yes,	Wi-Fi 802.	5.0, A2DP, Ye
29	galaxy_tal	GSM /	/ HSF GSM 850 /	HSDPA 85 LT	FE (unsp	HSPA 42.	2 Yes	Yes	2018, Au	g Available.	260 x 161	L. 529g (V	Vi-I Nano-SI	M IPS LCD c	a 10.5 inche	1200 x 19	2 Android 8	Qualcom	n Octa-core	Adreno 5	c microSD,	32 GB, 3	GB RAM	5 MP, f/	2.: 1080p@3	Yes	Yes	Wi-Fi 802.	4.2, A2DP, Ye
30	galaxy_a8	GSM /	/ HSF GSM 850 /	HSDPA 85 LT	r <mark>E (</mark> unsp	HSPA, LT	E Yes	Yes	2018, De	ceAvailable.	158.4 x 7	4. 173 g (6	5.10 Single S	IN IPS LCD c	a 6.4 inches	5 1080 x 23	4 Android 9	Qualcom	n Octa-core	Adreno 6	1 microSD,	128 GB, 6	5/8 GB RAM	1 24 MP, f	/2.0	Yes	No,	Wi-Fi 802.	5.0, A2DP, Ye
31	galaxy_a6	GSM /	HSF GSM 850	HSDPA 85 LT	re (unsp	HSPA 42.	2 Yes	Yes	2018, Oct	tc Available.	156.1 x 7	6	Hybrid E	ou Super AN	/ 6.0 inches	5 1080 x 21	6 Android 8	Qualcom	n Octa-core	Adreno 5	1 microSD,	64/128 G	B, 6 GB RAN	V 12 MP		Yes	Yes, Activ	Wi-Fi 802.	5.0, A2DP, Ye
32	galaxy_a9	GSM /	HSF GSM 850	HSDPA 85(LT	E band 1	HSPA 42.	2 Yes	Yes	2018, Oct	tc Available.	162.5 x 7	7 183 g (6	5.46 Dual SIN	1 (Super AN	/ 6.3 inches	5 1080 x 22	2 Android 8	Qualcom	n Octa-core	Adreno 5	1 microSD,	64/128 G	B, 6/8 GB R	A 24 MP, f	/2.0, 27mm	(Yes	Yes,	Wi-Fi 802.	5.0, A2DP, Ye
33	galaxy_a7	GSM /	HSF GSM 850	HSDPA 85 LT	E band 1	HSPA 42.	2 Yes	Yes	2018, Sep	ot Available.	159.8 x 7	6. 168 g (5	5.93 Single S	IN Super AN	/ 6.0 inches	5 1080 x 22	2 Android 8	Exynos 78	3 Octa-core	Mali-G71	microSD,	128 GB, 4	1/6 GB RAM	1 (24 MP, f	/2.0, 26mm	(Yes	Yes,	Wi-Fi 802.	5.0, A2DP, Ye
34	galaxy_no	GSM /	CDI GSM 850	HSDPA 85 LT	E band 1	HSPA 42.	2 Yes	Yes	2018, Au	g Available.	161.9 x 7	6.201 g (7	7.05 Single	Super AN	1 6.4 inches	5 1440 x 29	6 Android 8	Exynos 98	3 Octa-core	Mali-G72	microSD,	512 GB, 8	GB RAM of	r 8 MP, f/	1.7, 25mm (Yes, with	Yes, 32-	Wi-Fi 802.	5.0, A2DP, Ye
35	galaxy_wa	GSM /	HSF GSM 850	HSDPA 90 LT	r <mark>E (</mark> unsp	HSPA, LT	E Yes	Yes	2018, Au	g Available.	49 x 46 x	1 63 g (2.	22 Electron	i Super AN	1.3 inches	5 360 x 360	Tizen-bas	Exynos 91	L Dual-core	1.15 GHz	No	4 GB, 1.5	GB RAM (L	TE model), 4 GB, 768 I	Yes	No	Wi-Fi 802.	4.2, A2DP, Ye
36	galaxy_j64	GSM /	HSF GSM 850	HSDPA 85(LT	E band 1	HSPA 42.	2 Yes	Yes	2018, Sep	ot Available.	161.4 x 7	6. 178 g (6	5.28 Single S	IN IPS LCD c	a 6.0 inches	5 720 x 148	0 Android 8	Qualcom	n Quad-cor	Adreno 3	c microSD,	64 GB, 4	GB RAM or	38 MP, f/	1.9	Yes	Yes, Dolby	Wi-Fi 802.	.2, A2DP, Ye
37	galaxy i4	GSM /	HSEGSM 850	HSDPA 850 T	F band 1	HSPA 42.	2 Yes	Yes	2018. No	v Available.	160.6 x 7	6.177 ø (6	5.24 Dual SIN	(IPS I CD c	a 6.0 inches	5 720 x 148	0 Android 8	Oualcom	Ouad-cor	e Adreno 3	microSD.	16 GB. 1	GB RAM	5 MP. f/	2.2	Yes	Yes	Wi-Fi 802.	4.2. A2DP. Ye
	<	sar	msung	+														: [4										Þ

Analysis of the problem

- Duplicate Columns/Rows
- NaN values
- STATA Incompatible
- Ugly to look at

The solution

- The data was recalculated accordingly,
 - Q Quartile computed using a table of range 1990 (min) 2019 (max)
 - OS OS computed using a market share value per OS and evened them by making them a percentage based on their market share. Highest market shares being 100 percent.
 - CPU Computed by adding up all the cores with their speeds
 - BC (Battery Capacity)- numeric as it is
 - SS (Size)- Dimension in mm not in inch. mm x mm x mm -> sum(mm+mm+mm)
 - R (Resolution)- x by x -> x times x
 - CC (Color Code)- 65k, 256 K, 262 K and 16 M -> 1, 2, 3, 4
 - PCP (Primary Camera Pixel)- Max of MP
 - SCP (Secondary Camera Pixel)- Max of MP
 - S (Sensors) added functionalities
 - P (Price) in \$

Final result

	cieaneo_samsung										
	Category	Q	os	CPU	вс	SS	R	сс	PCP	s	с
0	galaxy_view2	118	8.1	12.8	12000	697.8	2073600	4	0	1	725.13408
1	galaxy_s10+	117	9	34.4	4100	239.5	4377600	4	16	11	1153.6224
2	galaxy_s10	117	9	34.4	3400	228.1	4377600	4	16	11	845.98976
3	galaxy_s10e	117	9	34.4	3100	220	2462400	4	16	11	747.10784
4	galaxy_fold	117	9	16.8	4380	285.7	3305472	4	16	8	1922.704
5	galaxy_watch_active	117	4	1.15	230	89.5	129600	4	0	9	274.672
6	galaxy_m30	117	8.1	13.2	5000	89.8	2527200	4	5	2	274.672
7	galaxy_m20	117	9.5	13.2	5000	239.7	2527200	4	5	5	241.71136
8	galaxy_m10	117	9.5	1.6	3400	238.9	1094400	4	5	5	109.8688
9	galaxy_a80	118	9	14.6	3700	251	2592000	4	8	2	714.1472
10	galaxy_a70	117	9	14.2	4500	248.9	2592000	4	8	6	439.4752
11	galaxy_a60	118	9	14.2	3500	237	2527200	4	8	6	296.64576
12	galaxy_a50	117	9	16	4000	240.9	2527200	4	8	4	384.5408
13	galaxy_a40	117	9	12.4	3100	221.5	2527200	4	5	6	274.672
14	galaxy_a30	117	9	13.2	4000	240.9	2527200	4	5	6	274.672
15	galaxy_a20	117	9	11	4000	240.9	1123200	4	5	4	219.7376
16	galaxy_a10	117	9	11	3400	239.1	1094400	4	13	5	131.84256
17	galaxy_tab_s5e	117	9	14.2	7040	21.4	4096000	4	13	2	461.44896
18	galaxy_tab_a_10_1_(2019)	117	9	13.2	6150	22.9	2304000	4	8	5	241.71136
19	galaxy_tab_advanced2	116	8	10.4	7300	425.1	2304000	4	8	2	219.7376
20	galaxy_tab_a_8_0_(2018)	115	8.1	1.4	5000	342.2	1024000	4	5	2	219.7376
21	galaxy_tab_s4_10_5	115	9	16.8	7300	420.7	4096000	4	13	2	637.23904
22	galaxy_tab_a_10_5	115	8.1	1.8	7300	177.6	2304000	4	8	7	307.63264
23	galaxy_a6s	116	8	16	3300	240.9	2332800	4	2	6	296.64576
24	galaxy_a9_(2018)	116	9	16	3800	176.7	2397600	4	8	5	395.52768
25	galaxy_a7_(2018)	115	9	14	3300	244.1	2397600	4	8	6	307.63264
26	galaxy_note9	115	9	36	4000	247.1	4262400	4	12	6	824.016
27	galaxy_watch	115	4	1.15	472	4.2	129600	4	0	12	318.61952
28	galaxy_j6+	115	8.1	1.4	3300	246.2	1065600	4	5	5	263.68512
29	galaxy j4 core	116	8.1	1.4	3300	244.6	1065600	4	8	6	164.8032

* Note: Q (Quarter), OS (Operating System), CPUS (CPU Speed in MHz), BC (Battery Capacity in mAh), SS (Screen Size in inches), R (Screen Resolution), CC (Colour Code), OF (Other Features), PCP (Primary Camera Performance), S (Sensors), SCP (Secondary Camera Performance (Shagun Srivastava & Madhvendra Misra, 2016). 35

□ Analysis

O TFDEA Syntax

tfdea *inputvars* = *outputvars* , rts(*string*) ort(*string*) tf(*string*)

[option]

- rts(*string*) is a returns to scale of DEA models. There are two types of returns to scale, rts(crs) and rts(vrs), which means constant returns to scale (CRS) and variable returns to scale (VRS), respectively. The default is rts(vrs).
- ort(*string*) is an orientation of DEA models. There are two types of orientation, ort(in) means input-oriented analysis and ort(out) means output-oriented analysis. The default is ort(out).
- tf(*string*) is a reference date for measuring technological rate of change (ROC) and forecasting. If you have a dataset between year 1960 to year 2000 and want to measure ROC until 1990 and forecast afterward, tf(*string*) is tf(1990). The default is the last date in the dataset.

□ Analysis

O TFDEA results

•tfdea cost=OS CPU BC SS R CC PCP S C, rts(vrs) ort(out) tf(90)

dmu	tk	theta_tk	theta_tf	tk_ineff	tk_eff	ROC
m886_mercury	85	1	1		96.3333	•
optimus_~660	85	1	1.01647	85	96.4099	1.00132
i405_strat~e	85	1	1			
galaxy_~7510	85	1	1		90.6196	•
galaxy_~5830	85	1	1		99.5	
galaxy_~9210	85	1	1		95.6923	
evo_4g+	85	1	1		98.8624	
p6210_gala~s	85	1	1		95.49	•
us760_gene~s	85	1	1		99.625	•
atrix_4g	85		1		96.3077	•
triumph	86	1	1		95.0769	•
u8350_boul~r	86	1.24137	2		99.1795	•
status	86	1	1.30902	86	95.9169	1.02497

Annual Rate of Change (AROC) is 1.0210902 for the chosen data

□ Analysis

O TFDEA results

dmu	tk	theta_tk	theta_tf	tk_ineff	tk_eff	ROC
impulse_4g	86	1	1		•	•
panache	86	1	1	•	95.7982	
u8850_vision	86	1	1.85519	86	96.686	1.05431
c5_5mp	86	1	1		99.75	
galaxy_~5512	86	1	1.07783	86	91.3741	1.01183
esteem_ms910	87	1	1		98.7692	
jil_sander~e	87	1	1		97.9617	
exhibit_~679	87	1	1		96.5749	
u8520_duplex	87	1	1.07059	87	92.1471	1.01116
fire_xt	87	1	1.38179	87	90.3583	1.07702
torch_9860	87	1	1		100	
600	87	1	1		93.3028	
optimus_~730	87	1.12456	1.56613		94.1073	
i927_capti~e	87	1	1			
galaxy_~7000	87	1	1		97.1239	•
ascend_d_q~d	87	1	1	•	95.6341	•

□ Analysis

O TFDEA results

dmu	tk	theta_tk	theta_tf	tk_ineff	tk_eff	ROC
mediapa~301w	87	1	1.28881	87	93.5689	1.03409
optimus_sl~r	87	1.34477	2.52369		92.5319	
explorer	87	1	1.00061	87	91.0333	1.00012
optimus_black_(w	87	1	1		99.3846	
galaxy_~5510	87	1	1.08708	87	96.9595	1.00765
701	87	1	1		98.7692	
hero_s	87	1	1			
p6810_gala~7	87	1	1		98.6909	
ascend_ii	87	1.72156	2		97.8561	
fire_xt311	87	1	1.12276	87	98.2924	1.00946
optimus_~640	87	1	1		99.875	
galaxy_t~957	87	1	1		95.5197	
titan	87	1	1		98.5626	
ascend_p1s	87	1	1		96.7802	
optimus_~935	87	1	1		94.6606	•
i9100g_gal~i	87	1	1			
m930_trans~a	87	1	1.096	87	98.48	1.00737
omnia_w~8350	87	1	1 39	•	98.8683	•

O TFDEA results

dmu	tk	SE_tf	tf_eff	tf_exp
m886_mercury	85	1	96.3333	95
optimus_~660	85	1.01647	96.4099	97
galaxy_~7510	85	1	90.6196	91
galaxy_~5830	85	1	99.5	99
galaxy_~9210	85	1	95.6923	94
evo_4g+	85	1	98.8624	97
p6210_gala~s	85	1	95.49	94
us760_gene~s	85	1	99.625	98

III. Remarks

Dimension of TFDEA

□ Challenges of TFDEA

- ✓ Some cases that are hard to solve exist when we specify variable returns to scale. For example, product with disruptive technology may cause multiple optima or NP-hard problem for super-efficiency calculation with VRS option.
- ✓ How to interpret the results(inference).

- Ji, Y., & Lee, C. (2010). "Data Envelopment Analysis", The Stata Journal, 10(no.2), pp.267–280.
- Joseph Paul Martino, "Technological Forecasting for the Chemical Process Industries," Chemical Engineering, vol., pp. 5462,1971.
- Joseph Paul Martino, Technological Forecasting for Decision Making, McGraw-Hill; 3 edition, September 1, 1992.
- Oliver Lane Inman, "Technology Forecasting Using Data Envelopment Analysis", Dissertation and Thesis; Paper 2682, 2004.
- Charnes A., "Measuring the Efficiency of Decision–Making Units", European Journal of Operational Research, 2(6), 426–444, 1978.
- E. Rhodes, Data Envelopment Analysis and Related Approaches for Measuring the Efficiency of Decision Making Units with an Application to Program Follow Through in U.S. Education, Ph.D. thesis, Carnegie–Mellon University, School of Urban and Public Affairs, Pittsburgh (1978).

- Lee, C., & Ji, Y., "Data Envelopment Analysis in Stata", DC Stata Conference, 2009.
- Cooper, W. W., Seiford, L. M., & Tone, A., Introduction to Data Envelopment Analysis and Its Uses, Springer Science + Business Media, 2006.
- Charnes, A., Cooper, W. W., & Rhodes, E., "Evaluating Program and Managerial Efficiency: An Application of Data Envelopment Analysis to Program Follow Through." Management Science, Vol. 27., 1981, pp. 668–697.
- Banker, R. D., Charnes, A., & Coopers, A. A., "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis", Management Science Vol. 30, No. 9, 1984, pp.1078–1092.

- Bunn, D.W. and A.A. Salo, "Forecasting with scenarios", European Journal of Operational Research, 1993. 68(3): p. 291–303.
- Inman, O.L., T.R. Anderson, and R.R. Harmon, "Predicting US jet fighter aircraft introductions from 1944 to 1982: A dogfight between regression and TFDEA", Technological Forecasting and Social Change, 2006. 73(9): p. 1178– 1187
- Jung, B. and B. Leem, C. Lee, "Technology Forecasting using Data Envelopment Analysis in Stata", working paper, 2014.
- Kneip, A., et al., "A Note on the Convergence of Nonparametric DEA Estimators for Production Efficiency Scores", Econometric Theory, 1998. 14(06): p. 783–793.
- Bongers, A. and J.L. Torres, "Measuring technological trends: A comparison between U.S. and U.S.S.R./Russian jet fighter aircraft", Technological Forecasting and Social Change, 2013

- Lim, D.-J., T.R. Anderson, and J. Kim. "Forecast of wireless communication technology: A comparative study of regression and TFDEA Model", in Technology Management for Emerging Technologies (PICMET), 2012 Proceedings of PICMET'12
- Martino, J.P., "A comparison of two composite measures of technology", Technological forecasting and social change, 1993. 44(2): p. 147–159.
- Meade, N. and T. Islam, "Forecasting with growth curves: An empirical comparison", International journal of forecasting, 1995. 11(2): p. 199–215.
- O'Neal, Charles .R., "New approaches to technological forecasting— Morphological analysis: An integrative approach", Business Horizons, 1970. 13(6): p. 47–58.
- B. K. Jung, C. Lee, "Technology Forecasting using TFDEA", working paper, Korea National Defense University, 2014.
- Shagun Srivastava & Madhvendra Misra, "Assessing and forecasting technology dynamics in smartphones: a TFDEA approach", Technology Analysis & Strategic Management, 2016. 28:7, 783–797.

Thank You!