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Outline 

1.  Problem: Why study adolescent plans to work in 
science (STEMM)? Why study the gender gap? 

2.  Definitional issues: math intensive versus life sciences 
3.  Data 
4.  Stata tools 
5.  Three levels of predictors of STEM career plans 
6.  Trends in STEM career plans in Europe 2006-2015 
7.  Challenges of visually presenting complex results 
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1: Why study STEMM career plans of adolescents? 

•  Documented historical decrease of interest among youth in 
science professions (particularly among young women) 

•  Concerns of government that the future workforce will need 
quantitative science skill to be competitive in labor market 
and competent to deal with every day life problems 

•  Adolescents change their minds, but their overall choices of 
courses and vocational orientation made at end of 
compulsory education matter for what happens to them later 
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Why Europe? 
•  Consultancy I am doing in 2017 for the European 

Commission’s Joint Research Centre in Italy. 



2. Definitions of STEMM or science 
•  Many 

•  Here categories based on the International Standard Classification of 

Occupations (see ilo.org for ISCO-08 and ISCO-88) 

•  Science occupations involve jobs in ISCO Major 2 and 3 groups i.e. 

professions, associate professions and a couple of managerial titles 

•  Distinguish two occupational groups in science: 
1.  Math intensive occupations: engineering, computing, math, physics 

2.  Life sciences: health, medicine, biology (also nursing and psychology) 
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Sikora, J. and A. Pokropek (2012), “Gender segregation of adolescent science career plans in 50 countries”, Science Education, 
Vol. 96/2, pp. 234-264, http://dx.doi.org/10.1002/sce.20479. 



Australia:  
 
stable pattern of segregation in 
adolescent occupational expectations 
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STEMM: Why 
distinguish between 
life sciences and math 
intensive sciences? 
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Source: Longitudinal Surveys of Australian Youth 
* Denotes the same cohort of students surveyed in Year 10 and 12 



Data 
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PISA surveys: 
2000 reading 
2003 mathematics 
2006 science 
2009 reading 
2012 mathematics 
2015 science 

https://www.youtube.com/watch?v=q1I9tuScLUA 



Occupational expectations: 

“What occupation do 
you expect to work in 
when you are 30 
years of age?" 
 
Verbatim answers 
coded to the 4 digit 
level of the 
International 
Standard 
Classification of 
Occupations ISCO88/ 
ISCO08 



Challenges 

•  Complex sample design: students clustered in schools 
•  Weights: replicate weights (BRR weights), to account for complex 

survey designs in the estimation of sampling variances 
•  Plausible values: 5 or 10 values representing the likely distribution of 

a student’s proficiency to indicate students’ academic performance 
(multiple imputations) 

•  Missing data (multiple imputations) 
•  Presenting complex results in accessible manner 
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Stata tools used 
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 repest estimates statistics using replicate weights (BRR weights, Jackknife 
replicate weights,...), thus accounting for complex survey designs in the 
estimation of sampling variances. It is specially designed to be used with 
    the PISA, PIAAC and TALIS datasets produced by the OECD, but works for ALL 
and IALS datasets as well.  It also allows for analyses with multiply imputed 
variables (plausible values); where plausible values are included in a 
    pvvarlist, the average estimator across plausible values is reported and 
the imputation error is added to the variance estimator. 

 
  spmap -- Visualization of spatial data 
 
         

Save subset of variables in memory to an Excel file 
 
        export excel [varlist] using filename [if] [in] [, export_excel_options] 
 
 



Three level analyses with interaction terms 
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Also focus on two issues: 

•  Overall interest in STEMM in European 
countries by gender (% males plus % 
females 

•  The gender gap in this interest (% males - 
% females who want a STEMM job in the 
future) 
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Europe trends for boys: 2006 - 2015 
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15%-20%
20%-25%
25%-30%
30%-35%
Over 35%

Proportions of boys interested in mathematical jobs 2015



14 

Europe trends for girls: 2006 - 2015 
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6%-10%
10%-15%

Proportions of girls interested in mathematical jobs 2006
less than 6%
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Proportions of girls interested in mathematical jobs 2015
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Summary 
•  In this kind of complex comparison even the presentation of descriptive 

statistics poses challenges 
•  Underlying computations and models complex yet results should be 

accessible to non-technical audiences 
•  The challenge of retaining as many comparative angles as possible in each 

figure: by gender, by type of science, by year but no clutter! 
•  Later the same challenge to report marginal effects for particular individual 

student predictors, school characteristics and country level characteristics 
(use margins with repest, but margins is not easy to use with multiple 
imputations in this environment (i.e. plausible values in estimations) 

•  So far key our findings:  
•  Large gender occupational expectations gap that favours boys in mathematically intensive 

occupations and girls in life science occupations persists over time 
•  Yet, over time more adolescent girls in Europe think they will pursue life science careers. Not likely 

they will take up engineering or computing instead 
•  The gender gap is mostly not explained by student school performance, family background, school 

characteristics or country features. Some predictors matter but only marginally. This was the case in 
2006 and remains the case today….. 
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