Modelling technology adoption decisions by smallholder cassava producers in East Africa

Paul Mwebaze, Sarina MacFadyen, Andy Hulthen, Paul De Barro-CSIRO, Australia Anton Bua, Chris Omongo, Andrew Kalyebi-NACCRI, Uganda Donald Kachigamba-DARS, Malawi Fred Tairo-MARI, Tanzania

2017 Oceania Stata Users Group Meeting, ANU, Canberra, 29 September

Overview of presentation

- Introduction
- Methodology
- Results and Discussion
- Conclusions and policy implications
- Further work

Leading cassava producers (FAO, 2014)

3

Research questions

- What is the current status of cassava production and productivity in Uganda, Tanzania and Malawi?
- What is the current adoption rate of improved cassava production technologies?
- What is the economic impact of *B. tabaci* on smallholder farmers?

Methods

- Literature review
- Questionnaire development
 - Pre-survey workshops
 - Pilot surveys
- Farmer surveys using multi-stage random sampling procedure
- A total of 1200 farmers interviewed
- Econometric modelling

Multivariate probit model

$$Y_{ijm}^{*} = X_{ijm}^{'}\beta_{m} + \mathcal{E}_{ijm}$$
(1)
$$Y_{ijm} = \begin{cases} 1 & \text{if } Y_{ijm}^{*} > 0 \\ 0 & \text{otherwise} \end{cases}$$
(2)

where: m denotes technology choices for household i and plot j. Y*ijm is a latent variable which captures the unobserved preferences for technology m. This latent variable is assumed to be a linear combination of observed plot and household characteristics Xijm, and unobserved characteristics captured by the stochastic error term, εijm. βm is the vector of parameters to be estimated is βm.

Cappellari L, Jenkins S, 2003. Multivariate probit regression. The Stata Journal 3(3): 278-294

Multivariate probit model (cont.)

$$\Omega = \begin{bmatrix} 1 & \rho_{12} & \rho_{13} & \dots & \rho_{1m} \\ \rho_{12} & 1 & \rho_{23} & \dots & \rho_{2m} \\ \rho_{13} & \rho_{23} & 1 & \dots & \rho_{3m} \\ \dots & \dots & \dots & 1 & \dots \\ \rho_{1m} & \rho_{2m} & \rho_{3m} & \dots & 1 \end{bmatrix}$$

where the off-diagonal elements in the covariance matrix, pjm, represents the unobserved correlation between the stochastic components of the jth and mth technology options. This specification with non zero diagonal elements allows for correlation across the error terms of several latent equations, which represent unobserved characteristics that affect the choice of technology

Results: Descriptive statistics of the sample

	Uganda	Tanzania	Malawi
Age (years)	46.03 (14.65)	51.07 (13.49)	47.42 (15.16)
Male (%)	65	80	76
Education (years)	8.13 (4.13)	8.72 (5.94)	5.88 (3.39)
Household size	8.52 (3.95)	7.52 (3.75)	6.31 (2.65)
No. of Children	4.26 (2.37)	4.40 (2.47)	2.91 (1.69)

Source: Field surveys. Figures in brackets are standard deviations

Results: Descriptive statistics (cont.)

	Uganda	Tanzania	Malawi
Total land/farm size (acres)	1.90 (1.51)	4.25 (3.54)	1.69 (1.97)
Land under cassava (acres)	1.21 (1.31)	2.46 (1.83)	1.44 (2.19)
Access to credit (%)	16	22	33
Member of organisation (%)	47	43	34
Extension (%)	30	31	45

Source: Field surveys. Figures in brackets are standard deviations

Results: Adoption of improved cassava production technologies

	Uganda	Tanzania	Malawi
Inorganic fertiliser (%)	0.0	0.0	3.0
Pesticide use (%)	1.0	2.0	2.0
Improved cassava variety (%)	70	11	51
Intercropping (%)	31	72	36
Plant spacing (%)	70	69	50
No. of Obs.	400	428	400

Source: Field surveys

Results: Multivariate probit model (Tanzania)

	Improved cassava varieties	Legume intercropping	Plant spacing
Farm size	0.662 (1.96) **	-0.321 (-2.45)**	0.176 (2.03)**
Distance to market	-0.112 (2.46) **	-0.403 (-1.81)*	-0.403 (-2.26)**
Extension	0.737 (3.05) **	0.155 (2.72) **	0.395 (2.49)**
Livestock	0.982 (2.80) ***	0.694 (1.76) *	0.206 (1.02)
Credit	0.173 (2.56)**	0.3516 (1.81)*	0.237 (1.02)
Household size	0.348 (1.61)**	0.118 (2.65)**	0.155 (2.34)**

Note: *t* statistics in parentheses; * p<0.05, ** p<0.01, *** p<0.001

Results: Multivariate probit model (Tanzania)

	Improved cassava varieties	Legume intercropping	Plant spacing
Male	0.142 (0.49)	0.696 (3.15)***	0.484 (2.08)**
Age	-0.606 (-1.79) **	0.564 (1.83)*	-0.293 (-0.96)
Education	0.034 (0.15)	0.0441 (0.25)	0.122 (1.65)
Constant	-1.629 (-1.11)	0.997 (0.86)	2.026 (1.67)
Wald Chi2 (d.f.=40)	941.29		
Log pseudo likelihood	-370.69		

Note: *t* statistics in parentheses; * p<0.05, ** p<0.01, *** p<0.001

Correlation coefficients for MVP equations

	Improved cassava varieties	Legume intercropping	Plant spacing
Improved varieties		-0.29 (-2.06)**	0.25 (1.59)*
Legume intercropping	-0.29 (-2.06)**		-0.29 (-2.58)**

Note: *t* statistics in parentheses; * p<0.05, ** p<0.01, *** p<0.001

Likelihood ratio test of rho21 = rho31 = rho32 = 0: chi2(3) = 19.21 Prob > chi2 = 0.0167

Conclusions

- Both socio-economic and farm characteristics are significant in conditioning farmer's decisions to adopt improved technologies
- Results suggest that adoption covariates differ across technologies.
 Farm size positively influences adoption of improved cassava varieties but negatively influences legume intercropping
- Access to markets significantly influences farmers' adoption decisions. Households located closer to markets are more likely to adopt improved cassava production technologies
- The size of the household has a positive effect on the adoption of improved cassava production technologies, probably because of increased labor availability

Conclusions (cont.)

- Older farmers are significantly less likely to adopt improved cassava varieties and plant spacing, perhaps because young farmers are stronger and better able to provide the labor needed
- The decision to adopt improved cassava varieties is positively and significantly influenced by livestock ownership
- Credit constrained households are less likely to adopt improved cassava production technologies, because adoption of such technologies requires purchased inputs (hence cash outlay)
- Institutional factors such as access to extension services increase adoption of all improved cassava production technologies

Further work

- Field trials to validate surveys
- Publications in the pipeline.....
 - Mwebaze P, et al. Socio-economic and baseline survey data for future impact assessments of cassava production in East Africa (in prep for *Agricultural Economics*)
 - Mwebaze P, et al. Modelling technology adoption by cassava farmers in East Africa (in prep for *Food Policy*)

Thank you!

- Funding from Bill & Melinda Gates Foundation through University of Greenwich
- Any questions or comment? Please email: naul mwebaze@csiro au

