getpatent: Scraping patent data into Stata

Demetris Christodoulou (Sydney)
Le Ma (UTS)
Hadi Mostafavi (Sydney)

Methodological and Empirical Advances in Financial Analysis (MEAFA)

September 27, 2016

getpatent: Scraping patent data into Stata
Outline

@ Problem question

ristodoulou, Ma and Hadi getpatent: Scrapi patent data into Stata

getpatent: Scraping patent data into Stata
Outline

@ Problem question

© The HTML source code

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Outline

@ Problem question

© The HTML source code

© Scraping source code into Stata

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Problem question

Outline

@ Problem question

Lir

ristodoulou, Ma and Hadi getpatent: Scrapi tent data into Stata

getpatent: Scraping patent data into Stata
Problem question

Create database of patent attributes

@ To enable research in innovation activity and the generation of
intangible assets, we require detailed data on the outcome of the
innovation process - the most observable and measurable being the
number of patents and quality measures.

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

Lir

getpatent: Scraping patent data into Stata
Problem question

Create database of patent attributes

@ To enable research in innovation activity and the generation of
intangible assets, we require detailed data on the outcome of the
innovation process - the most observable and measurable being the
number of patents and quality measures.

@ Although patent data is public and freely searchable, regional patent
offices have restrictions on access and their data is limited to basic
patent bibliographic information e.g. identifiers, date, title,
classification, applicants and inventors. Their free data does not
include information on patent citations, legal claims, legal status etc.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Problem question

Create database of patent attributes

@ To enable research in innovation activity and the generation of
intangible assets, we require detailed data on the outcome of the
innovation process - the most observable and measurable being the
number of patents and quality measures.

@ Although patent data is public and freely searchable, regional patent
offices have restrictions on access and their data is limited to basic
patent bibliographic information e.g. identifiers, date, title,
classification, applicants and inventors. Their free data does not
include information on patent citations, legal claims, legal status etc.

o The EPO (Europe) provides free raw patent data in XML format.

o The WIPO (World) allows downloads of up to 10,000 records.

o The SIPO (China) requires domestic account registration.

e The exception is USPTO which provides all data in tab-delimited
format.

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

Lir

getpatent: Scraping patent data into Stata
Problem question

Create database of patent attributes

@ To enable research in innovation activity and the generation of
intangible assets, we require detailed data on the outcome of the
innovation process - the most observable and measurable being the
number of patents and quality measures.

@ Although patent data is public and freely searchable, regional patent
offices have restrictions on access and their data is limited to basic
patent bibliographic information e.g. identifiers, date, title,
classification, applicants and inventors. Their free data does not
include information on patent citations, legal claims, legal status etc.

o The EPO (Europe) provides free raw patent data in XML format.

o The WIPO (World) allows downloads of up to 10,000 records.

o The SIPO (China) requires domestic account registration.

e The exception is USPTO which provides all data in tab-delimited
format.

@ There is also the issue of non-standardisation when working across _W
multiple sources.

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Problem question

Google Patent Search

@ Google Patent Search consolidates 87 million patent publications
from 17 patent offices around the world including the US, Europe,
Japan, China, South Korea, WIPO, Russia, Germany, The United
Kingdom, Canada, France, Spain, Belgium, Denmark, Finland,
Luxembourg, and the Netherlands.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Problem question

Google Patent Search

@ Google Patent Search consolidates 87 million patent publications
from 17 patent offices around the world including the US, Europe,
Japan, China, South Korea, WIPO, Russia, Germany, The United
Kingdom, Canada, France, Spain, Belgium, Denmark, Finland,
Luxembourg, and the Netherlands.

@ This is free data and even though Google does not like mining its
website, an efficient and careful code can scrape this information
into a database.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Problem question

Google Patent Search

o Google provides this data from several locations. The US servers are
indexed in https://patents.google.com.

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Problem question

Google Patent Search

o Google provides this data from several locations. The US servers are
indexed in https://patents.google.com.

@ The US-based data is then mirrored onto local services, e.g. in
Australia as https://www.google.com.au/patents, in Greece as
https://www.google.gr/patents and so on.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Problem question

Google Patent Search

o Google provides this data from several locations. The US servers are
indexed in https://patents.google.com.

@ The US-based data is then mirrored onto local services, e.g. in
Australia as https://www.google.com.au/patents, in Greece as
https://www.google.gr/patents and so on.

@ There are two advantages in working with local servers: (1) they
speak your language, (2) they give information for the 'cooperative’
classification scheme.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Problem question

Google Patent Search

o Google provides this data from several locations. The US servers are
indexed in https://patents.google.com.

@ The US-based data is then mirrored onto local services, e.g. in
Australia as https://www.google.com.au/patents, in Greece as
https://www.google.gr/patents and so on.

@ There are two advantages in working with local servers: (1) they
speak your language, (2) they give information for the 'cooperative’
classification scheme.

@ The US server contains the more widely recognised standard for
international classification for patents, and importantly for us it
applies a more consistent structure in its source code making it
easier to scrape.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

Outline

© The HTML source code

Lir

ristodoulou, Ma and Hadi getpatent: Scrapi tent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

HTML source code

@ HTML source code can be unpredictable and may follow any
structure from page to page. Programmers do not need to follow
any specific structural rules when writing code for webpages - they
can write dirty and the browser will still interpret.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

HTML source code

@ HTML source code can be unpredictable and may follow any
structure from page to page. Programmers do not need to follow
any specific structural rules when writing code for webpages - they
can write dirty and the browser will still interpret.

@ We tried writing something with Stata that is more generalisable
and could be interpreted in any HTML situation, but the task is
beyond our capabilities and patience.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

HTML source code

@ HTML source code can be unpredictable and may follow any
structure from page to page. Programmers do not need to follow
any specific structural rules when writing code for webpages - they
can write dirty and the browser will still interpret.

@ We tried writing something with Stata that is more generalisable
and could be interpreted in any HTML situation, but the task is
beyond our capabilities and patience.

@ The point being that scraping source code with Stata must be
coded as a webpage-specific task. What works for Google Patent
Search does not have to work with any other website.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

Google Search Patent HTML source code

<html>
<head>
<meta> </meta>
<script> </script>
<style> </style>

</head>
<body>
<hl itemprop="title">Component name extraction system and method </h1>
<h2>Info</h2>
<d1>
<dt>Publication number</dt>
<dd itemprop="publicationNumber'">CN102455997A</dd>
<dt>Authority</dt>
<dd itemprop="countryCode">CN</dd>
<dt>Inventor</dt>
<dd itemprop="inventor" repeat>Donald J. Leary</dd>
<h2>Links</h2>

<h2>Classifications</h2>

</body>
</html> .W

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

Segmenting the HTML code

@ Think of the source code as a very long string, and strings are
memory hungry.

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

Segmenting the HTML code

@ Think of the source code as a very long string, and strings are
memory hungry.
© Purge <head></head> that contains mostly formatting code, that
is taking up about half of the length of the string.

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

Segmenting the HTML code

@ Think of the source code as a very long string, and strings are
memory hungry.

© Purge <head></head> that contains mostly formatting code, that
is taking up about half of the length of the string.

@ Segment the remaining <body></body> by headings as sections.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

Segmenting the HTML code

@ Think of the source code as a very long string, and strings are
memory hungry.

© Purge <head></head> that contains mostly formatting code, that
is taking up about half of the length of the string.

@ Segment the remaining <body></body> by headings as sections.

© There is only one <hl></h1> that holds the patent’s title.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

Segmenting the HTML code

@ Think of the source code as a very long string, and strings are
memory hungry.

© Purge <head></head> that contains mostly formatting code, that
is taking up about half of the length of the string.

@ Segment the remaining <body></body> by headings as sections.
© There is only one <hl></h1> that holds the patent’s title.

@ The remaining <body> is segmented by <h2></h2>.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

Segmenting the HTML code

@ Think of the source code as a very long string, and strings are
memory hungry.

© Purge <head></head> that contains mostly formatting code, that
is taking up about half of the length of the string.

@ Segment the remaining <body></body> by headings as sections.
© There is only one <hl></h1> that holds the patent’s title.
@ The remaining <body> is segmented by <h2></h2>.

© Within a given <h2></h2> we search for the itemprop=""
attribute, e.g. itemprop="inventor". This is the item's property
name that ends up as a variable name in the new dataset.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
The HTML source code

Segmenting the HTML code

@ Think of the source code as a very long string, and strings are
memory hungry.

© Purge <head></head> that contains mostly formatting code, that
is taking up about half of the length of the string.

@ Segment the remaining <body></body> by headings as sections.
© There is only one <hl></h1> that holds the patent’s title.
@ The remaining <body> is segmented by <h2></h2>.

© Within a given <h2></h2> we search for the itemprop=""
attribute, e.g. itemprop="inventor". This is the item's property
name that ends up as a variable name in the new dataset.

Q@ itemprop="" contains a value that ends up as the observation for
that variable and that patent code, e.g. %

itemprop="inventor">Donald J. Leary<.

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Outline

© Scraping source code into Stata

Lir

istodoulou, Ma and Hadi getpaten! atent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Read source code

@ The source code is read as a single very long string, i.e. one source
code is a single observation, as for example:

generate source = fileread("https://patents.google.com/patent/USD213421S")

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Read source code

@ The source code is read as a single very long string, i.e. one source
code is a single observation, as for example:

generate source =

fileread("https://patents.google.com/patent/USD213421S")

o filereaderror()==0 checks that the URL exists. If not, then that
observation is recorded as missing.

L N Data Editor (Browse)
=t e Y s
Edit Browse Filter Variables Properties Snapshots
| source[1] <Idoctype html> <html> <head> <title>USD213421S - - Google Patents</title> <meta nam]
source
3 [caoere |

Vars: 1 Order: Dataset

Obs: 1 Binary (not editable) Filter: Off ‘W
L .

F o=
Christodoulou, Ma and Hadi

getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Simplify source code

@ We simplify the source code by removing all conflicting characters
with Stata's syntax, including the tab, carriage return, double
quotes, single quotes and the grave-accent. Using the ASCII
characters:

foreach j in char(9) char(10) char(34) char(39) char(96) {
replace source = subinstr(source, j',"",.)

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Simplify source code

@ We simplify the source code by removing all conflicting characters
with Stata's syntax, including the tab, carriage return, double
quotes, single quotes and the grave-accent. Using the ASCII
characters:

foreach j in char(9) char(10) char(34) char(39) char(96) {
replace source = subinstr(source, j',"",.)

’ ’

@ We trim all external and internal extra spaces:

replace source = strtrim(stritrim(source))

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Simplify source code

@ We simplify the source code by removing all conflicting characters
with Stata's syntax, including the tab, carriage return, double
quotes, single quotes and the grave-accent. Using the ASCII
characters:

foreach j in char(9) char(10) char(34) char(39) char(96) {
replace source = subinstr(source, j',"",.)

@ We trim all external and internal extra spaces:

replace source = strtrim(stritrim(source))

@ And make everything lowercase as it is easier to match string
patterns and work with regular expressions:

replace source = lower(source)

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

A crash course in regular expressions (ASCII capabilities)

Regular expressions: matching patterns in strings

Operator Description

Example

Anchors to match the location of expression
- Match expression at beginning of the string
$ Match expression at end of the string

Wildcards for counting matches

? Match preceding expression zero or one times
+ Match preceding expression one or more times
* Match preceding expression zero or more times

List operators
Match any character except new lines

- Match range of alpha characters or integers

] Match one character in brackets
[~] Match one character except those in brackets
O Match sub-expression to be extracted as string

| The OR operator
Escape operator
\ Match ~$.7*[1 () |+ as string literals

“sun matches "sunrise"

sun$ matches "Monsun"

A? matches nothing or A
A+ matches A, AA, AAA
Ax matches nothing, A, AA, AAA

.* matches anything any times
[0-1] matches numbers 0 or 1
[aeiou] matches a lowercase vowel
[~0-9] matches non-numerical
<(.*)> capture anything within <>
[AIB] matches A or B

\~ match ~ and \\ matches \

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Purge <head> and any remaining <script>

o First, get rid of the <head></head>:

replace source = regexr(source,'"<head>.x*</head>","")

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Purge <head> and any remaining <script>

o First, get rid of the <head></head>:

replace source = regexr(source,'"<head>.x*</head>","")

@ Then purge any remaining formatting <script></script>:

local check =1
while ‘check'==1 {

qui replace “posl' strpos(source',"<script")

qui replace 'pos2' = strpos(source',"</script>")
qui replace "subt' = substr(source', ‘posl', pos2'-"posl'+9)
qui replace ‘“source' = subinstr(source', subt',"",1)

qui sum “posl' if “touse'
if r(max)==0 local check = 0

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Purge <head> and any remaining <script>

o First, get rid of the <head></head>:

replace source = regexr(source,'"<head>.x*</head>","")

@ Then purge any remaining formatting <script></script>:

local check =1
while ‘check'==1 {

qui replace “posl' strpos(source',"<script")

qui replace 'pos2' = strpos(source',"</script>")
qui replace "subt' = substr(source', ‘posl', pos2'-"posl'+9)
qui replace ‘“source' = subinstr(source', subt',"",1)

qui sum “posl' if “touse'
if r(max)==0 local check = 0

}

@ We have since learned that there is a more elegant approach to this

using uregexr(). .W

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Scrape patent title from within <hl></h1>

@ To scrape the patent title, first take an extract from the source
that contains everything within <hl1></h1> inclusive (extracting
smaller strings increases computational efficiency). Then, locate
itemprop=title and scrape the patent title:

regexs(regexm(source," (<hl.%</h1>)"))

strtrim(regexs(regexm(extract,"itemprop=title>(.%)</h1>")))
regexr(title,"~([a-z])", regexs(regexm(title,"~([a-z])")))

generate extract
generate title
replace title

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Scrape rest of the data from <h2></h2>

@ The remaining data is segmented in <h2></h2> sections.

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Scrape rest of the data from <h2></h2>

@ The remaining data is segmented in <h2></h2> sections.

@ We repeat a similar process as in <hl></h1> for every <h2>
section, each time accounting for the specific complexity that is
pertinent to the data that is scraped.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Scrape rest of the data from <h2></h2>

@ The remaining data is segmented in <h2></h2> sections.

@ We repeat a similar process as in <hl></h1> for every <h2>
section, each time accounting for the specific complexity that is
pertinent to the data that is scraped.

@ For example, from <h2>information</h2> we scrape the patent
office authority, with itemprop=countrycode, using the following
regular expression:

generate auth = regexs(regexm(extract',"itemprop=countrycode>([*><][a-z \&\.\-1+)</"))

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Scrape rest of the data from <h2></h2>

@ The remaining data is segmented in <h2></h2> sections.

@ We repeat a similar process as in <hl></h1> for every <h2>
section, each time accounting for the specific complexity that is
pertinent to the data that is scraped.

@ For example, from <h2>information</h2> we scrape the patent
office authority, with itemprop=countrycode, using the following
regular expression:

generate auth = regexs(regexm(extract',"itemprop=countrycode>([*><][a-z \&\.\-1+)</"))

@ For itemprop=inventor there may be multiple inventors, so the
process is recursive until these is none left to scrape. The regular
expression for inventors is:

gen invent = regexs(regexm(extract',"itemprop=inventor.+>(["*><][a-z /:\.\-\(\)\\1+)</"))

i

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Scrape rest of the data from <h2></h2>

@ The remaining data is segmented in <h2></h2> sections.

@ We repeat a similar process as in <hl></h1> for every <h2>
section, each time accounting for the specific complexity that is
pertinent to the data that is scraped.

@ For example, from <h2>information</h2> we scrape the patent
office authority, with itemprop=countrycode, using the following
regular expression:

generate auth = regexs(regexm(extract',"itemprop=countrycode>([*><][a-z \&\.\-1+)</"))

@ For itemprop=inventor there may be multiple inventors, so the
process is recursive until these is none left to scrape. The regular
expression for inventors is:

gen invent = regexs(regexm(extract',"itemprop=inventor.+>(["*><][a-z /:\.\-\(\)\\1+)</"))

@ The are other specific complexities, too many to list here. .W.

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

getpatent.ado

gepatent requires access to a list of patent codes for reaching the
dynamic URLs. If some codes are not valid then it returns missing values.
There are two sets of options related to (1) which information should be
scraped and (2) how quickly or carefully should this be done:

getpatent codevar [if] [in] , L[options]

@ There are actually too many options to list here related to (1) and
they follow the HTML segmented structure.

Lir

Christodoulou, Ma and Hadi

getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

getpatent.ado

@ Specifying the option all scrapes every itemprop="" from the
webpage which is fine for small datasets but would be problematic
for large data because all would also scrape narrative text, such as
itemprop="abstract” and itemprop="description".

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

getpatent.ado

@ Specifying the option all scrapes every itemprop="" from the
webpage which is fine for small datasets but would be problematic
for large data because all would also scrape narrative text, such as
itemprop="abstract” and itemprop="description".

@ So, for large data be parsimonious. Specify only what you need. You
should definitely specify info that gets all patent identifiers (e.g.
pubid, auth, invent, dates) and then see what you need, e.g.
classifications, freferences, breferences.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

getpatent.ado

@ Specifying the option all scrapes every itemprop="" from the
webpage which is fine for small datasets but would be problematic
for large data because all would also scrape narrative text, such as
itemprop="abstract” and itemprop="description".

@ So, for large data be parsimonious. Specify only what you need. You
should definitely specify info that gets all patent identifiers (e.g.
pubid, auth, invent, dates) and then see what you need, e.g.
classifications, freferences, breferences.

@ There are also some utility options that specify how often should the
program visit the Google website and how many calls it should make
each time, as there is a risk of being uncovered as a robot and
banned from visiting.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

Example

. getpatent code, pubid pubno pubk auth isgrant Istatus dates class

[] Data Editor (Browse) — code_list.dta
| = T £
B e t
| Edit Browse Filter Variables Properties Snapshots
code[1] US3594863A
code pubid pubno pubk auth isgrant istatus prdat fidat pudat grdat
1 US3504863A 3594863 A us 1 Expired - Lifetire 10jul1969 10jull969 27jull971 27jull971 B,B29,B
2 CAI119302A1 CAL119392A1 1119392 AL <y 1 150ct1979 140ct1980 09mar1982 09marl982 B,629,8
3 IPS565889A IPSS65889A 565889 A » [21jun1979 19jun1980 21jan1981 .
4 DE3062455D1 DE3062455D1 3062455 1 E 1 Expired 150ct1979 @80ct1980 28apri983 28aprl983 B,629,8
5 USGE007EEBL USG6007861 6600786 BL us 1 Active 17aprl999 17apr2000 29jul2003 20jul2003 H,H04,H
6 US5725423A US5725423A 5725423 A us 1 Expired - Fee Related 13jan1994 @3marl997 10marl998 10mar1998 B,629,8
] 7 FR2B7E77BAL FR2878778AL 2878778 AL R 1 Granted 08dec2004 30may2005 9jun2006 . B,829,8
1 8 EPLIS2101A1 EP11S2101A1 1152101 AL Ep 1 Granted 05may2000 04nay2001 @7nov2001
9 102001074566A1 W02001074566A1 2.001e+09 AL Wo [] 30mar2000 3emar2000 1loct2001 . B,829,8
10 PSR PRI RISAEOR " ® . 150r+1070 140rt10RD JRACH10RR JRart10RR R ROQ R
| Vars: 25 Order: Dataset Obs: 10 Length: 14 Filter: Off

patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

To do list

@ ASCII regular expressions have limited capabilities in Stata by
comparison to Perl and POSIX, plus they are not well documented -
StataCorp people please note the small grumble.

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

To do list

@ ASCII regular expressions have limited capabilities in Stata by
comparison to Perl and POSIX, plus they are not well documented -
StataCorp people please note the small grumble.

@ We have recently discovered that Unicode regular expressions have
slightly increased capability, e.g. they can do conditional lookahead
assertions which is very useful for extracting repeated strings as in
itemprop=="inventor" and itemprop=="classification".
Thus, migrating from ASCII to Unicode regular expressions would
simplify our code considerably.

Lir

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

getpatent: Scraping patent data into Stata
Scraping source code into Stata

To do list

@ ASCII regular expressions have limited capabilities in Stata by
comparison to Perl and POSIX, plus they are not well documented -
StataCorp people please note the small grumble.

@ We have recently discovered that Unicode regular expressions have
slightly increased capability, e.g. they can do conditional lookahead
assertions which is very useful for extracting repeated strings as in
itemprop=="inventor" and itemprop=="classification".
Thus, migrating from ASCII to Unicode regular expressions would
simplify our code considerably.

o At this stage, getpatent requires access to a list of patent codes to
get to the URLs. The ultimate aim is to design getpatent to require
access to only 1 patent code and then build a database by expanding
forwards and backwards to all patents that are cited ad infinitum, or

at a cut-off point.

Christodoulou, Ma and Hadi getpatent: Scraping patent data into Stata

	Problem question
	The HTML source code
	Scraping source code into Stata

