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1 The problem of competing risks
• Let us consider possibly right censored event times:
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from other causes) or the positive event of return-to-work after traumatic
injury (with the negative competing event of death)
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• By definition: competing events make events of interest impossible

Different from censoring, which make events unobservable
• If a competing risk problem is present depends on:

1 choice of event of interest
2 the data being collected

Take for example:

Hospitalised

Discharged

Death during hospital stay

Hospitalised

Discharged

Death

Data from hospital only Data from hospital + national registries

• Treated by Bernoulli (1766), Florence Nightingale (1860), Neyman
(1950), Andersen et al. (2012) and many others
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To censor or not censor
• From a modelling perspective it may appear that the question

boils down to censoring or not censoring competing events

• Remember, the way censoring is dealt with in time-to-event analysis
is that the uncensored are made to represent the censored
This is possible with the independent censoring assumption
(or conditional independent censoring and e.g. censor weighting)
Allow us to make valid inference for a world without censoring
• Censoring competing events indicate that we are interested in
a world without competing events
When is this world relevant?
When are the independent censoring assumptions reasonable?
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2 Classical survival methods for competing risks

Fundamental quantities

• The cause specific cumulative incidence function at time t,

Fj(t) = P(T ≤ t,Y = j),

for a given cause j ∈ {1, ..., J}
• Only meaningful to consider the overall survival function,

S(t) = P(T > t) = 1−
J∑

j=1
(Fj(t)) ,

which only can be constructed from all the cause specific
cumulative incidence functions
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• Can also consider the cause specific hazard function at time t,

hj(t) = lim
∆t→0

1
∆tP(t ≤ T < t + ∆t,Y = j | T ≥ t),

which is the rate of (only) events by cause j , in small time intervals
t + ∆t, among those who have not yet died by any cause

Now have S(t) = exp{−
(∑J

j=1

∫ t
0 hj(s)ds

)
} and Fj(t) =

∫ t
0 S(s)hj(s)ds

• The subdistribution hazard function has also been suggested;

h̃j(t) = lim
∆t→0

1
∆tP(t ≤ Tj < t + ∆t,Y = j | Tj ≥ t),

where Tj = T × I(Y = j) +∞× I(Y 6= j)
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Competing risk data
• Let us now consider the following data structure:

. list in 1/6

+----------------------------------+
| id A L T D |
|----------------------------------|

1. | 1 0 4.579293 12.72125 0 |
2. | 2 0 3.884528 14.63008 2 |
3. | 3 1 67.89856 12.08012 1 |
4. | 4 0 27.68397 20.87179 2 |
5. | 5 0 5.103034 15.05113 2 |

|----------------------------------|
6. | 6 0 46.6393 37.35997 1 |

+----------------------------------+

where T are event times, D an event indicator (1 if event of type 1, and
2 if event of type 2) and XXX = {A,LLL} baseline covariates
Simulated data, where we can imagine that A denote two treatments
given at time zero, and L a variable that affects both treatment choice
and time to event of interest
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The Kaplan-Meier estimator
• Easy to produce a "cause specific" survival curve:

stset T, fail(D == 2) id(id)
sts graph, by(A) plot1opts(lcolor(black)) plot2opts(lcolor(red)) ytitle("Survival
probability") xtitle("Time") legend(ring(0) pos(1)) title("") ylab(, nogrid) xlab(, nogrid)
plotregion(lstyle(refline))

0.00

0.25

0.50

0.75

1.00
Su

rv
iv

al
 p

ro
ba

bi
lit

y

0 10 20 30 40 50
Time

A = 0
A = 1

but interpretation is unclear, and this should generally be avoided
(data has 429 events (type 2), 500 competing events and 71 censored)
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The Nelson-Aalen estimator
• Similarly, easy to estimate cause specific cumulative hazard:

sts graph, by(A) na plot1opts(lcolor(black)) plot2opts(lcolor(red)) ytitle("Cumulative cause
specific hazard") xtitle("Time") legend(ring(0) pos(11)) title("") ylab(, nogrid)
xlab(, nogrid) plotregion(lstyle(refline))
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These curves can be interpreted as describing the movement from
the "alive" state to the "event 2" state
But, the shape of these (cumulative) hazards is now a result of i)
individual risk, ii) selection, and iii) rate of competing events
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The Aalen-Johansen plug-in estimator
• Can also calculate cause specific cumulative incidence, where

competing events are allowed:
stcompet cuminc = ci ub = hi lb = lo, compet1(1) by(A)
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Event 1 for A = 0
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Event 2 for A = 0
Event 2 for A = 1

This give a very different picture than cumulative incidence from
Kaplan-Meier (1-KM two slides back), which always will
overestimate the incidence in the presence of competing events
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• Note that, under competing risk, the cumulative incidence is

Fj(t) =
∫ t

0
S(t)hj(t),

where S(t) is the overall survival S(t) = exp (−
∑

k Hk(t)) for all
k events and hj(t) is the cause specific hazard for event j

So, there is no longer a one-to-one correspondence between
(cause specific) hazard and cumulative incidence
• A general "empirical transition matrix" estimator given by
Aalen and Johansen (1978):

P̂(0, t) = π0
∏

u∈(0,t]
(I + dÂ(u)),

where π0 is the initial state distribution vector (for us {1, 0, 0})
and Â(u)) is the cumulative transition hazard matrix
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Cause specific hazard models
• Common to also fit Cox models for cause specific hazards, e.g.

using stcox A :
...
Cox regression with no ties

No. of subjects = 1,000 Number of obs = 1,000
No. of failures = 315
Time at risk = 11,185.729

LR chi2(1) = 0.49
Log likelihood = -1759.2309 Prob > chi2 = 0.4848

------------------------------------------------------------------------------
_t | Haz. ratio Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
A | .8928204 .1466702 -0.69 0.490 .6470397 1.231962

------------------------------------------------------------------------------
...

Tempting because it is easy, but this HR can be hard to motivate
(useful component for calculating cumulative incidence though)
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(useful component for calculating cumulative incidence though)

13 / 28



The Fine and Gray model
• Fine et al. (1999) showed that the one-to-one correspondence can

be restored by estimating the subdistribution hazard, identified
(in a censor free world) by setting all competing event times to ∞
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subdistribution data equal to the real world Fj(t)
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• The subdistribution dataset (and censoring weights) can be created
manually

• See also stcrreg A compete(D == 2) , fitting the Fine and Gray model,
corresponding to a (weighted) Cox model on the subdistribution dataset:

...

Competing-risks regression No. of obs = 1,000
No. of subjects = 1,000

Failure event: D == 2 No. failed = 315
Competing event: D == 1 No. competing = 500

No. censored = 185

Wald chi2(1) = 51.90
Log pseudolikelihood = -1999.7238 Prob > chi2 = 0.0000

(Std. err. adjusted for 1,000 clusters in id)
------------------------------------------------------------------------------

| Robust
_t | SHR std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
A | .3040094 .0502443 -7.20 0.000 .2198908 .4203072

------------------------------------------------------------------------------
...

The coefficient is not easy to interpret, but the model can be used as a
test for difference in cumulative incidence, equivalent to the log-rank test
in settings without competing events1

1For regression of Fj(t), see also pseudo values (Klein et al. 2005)
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An example (out of many)

• Consider time to post covid condition (PCC) after covid-19
Compare vaccinated and unvaccinated (from time of infection)
After covid infection people can get PCC, but are censored if they
get vaccinated, reinfected, emigrate or die
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• Does it matter?

Estimated cumulative incidence not representative of real world incidence
Hard to tell how it affect contrasts between groups (curves) and for
vaccine effectiveness calculated using 1-HR

(paper generated a lot of discussion, a BMJ editorial, 8 online comments
and a correction, but nothing on competing risks)
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3 Causal estimands under competing risk

Recent developments in the analysis of competing risks
• Young et al. (2020) put classical statistical estimands for
competing risk in a causal frame, drawing parallels to mediation
analysis and defining total and direct effects

Followed up by Stensrud et al. (2022) on separable effects and
Janvin et al. (2024) on recurrent and competing events
• The ICH E9 R1 addendum (2019) on estimands and sensitivity

analysis in clinical trials open for more causal inference formalism
Give strategies on how to handle ”intercurrent events”: events occurring
after treatment initiation affecting interpretation or existence of the
measurements associated with the clinical question of interest

18 / 28

https://database.ich.org/sites/default/files/E9-R1_Step4_Guideline_2019_1203.pdf
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Start by justifying an estimand

• Causal inference formalism boils down to three distinct steps:
1 Estimand: Motivate and describe a well-defined causal contrast
2 Identification: Lay out assumptions needed to identify it
3 Estimation: Chose a statistical estimator

• Encouraged through the causal roadmap (Petersen et al. 2014)
and target trial emulation (Hernán and Robins 2016)
... no reason to start by asking whether to censor or not

19 / 28
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Average causal effects
• Let us consider general average total effects (ATEs) on form

ATE = E(Y 1) vs. E(Y 0),

for outcome Y under interventions 1 and 0

Note: this is a marginal effect (as opposed to conditional), and that
interest may be in both adjusted or unadjusted marginal effects

• In a time-to-event setting we have various options, where hazard
ratios (or other contrasts of hazards) are not the best ones
(Hernán 2010; Aalen, Cook et al. 2015)
• Under competing risks contrasts of cumulative incidence are a

natural choice, e.g. ATEs as a contrast of

P(T 1 ≤ t, J = j) vs. P(T 0 ≤ t, J = j),

where J denote the event type, taking values 1, 2, ...
(contrasts of restricted mean time lost is a related alternative)
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Inverse probability weighting
• For baseline differences between groups, adjusted marginal effects
can be estimated with propensity score weights

:

WPS = 1
P(A | L)

In Stata:
mkspline ans=L, cubic nknots(5)
logistic A ans1 ans2 ans3 ans4
predict double phat, pr
gen psw=1/phat if A==1
replace psw=1/(1-phat) if A==0
stset T [pweight=psw], failure(D==2)

Standard methods apply to weighted data, but SE must take into
account the uncertainty in weights (e.g. using bootstrap)
• stcrreg A, compete(D==1) give a weighted test for difference in cause

specific cumulative incidence

21 / 28



Inverse probability weighting
• For baseline differences between groups, adjusted marginal effects
can be estimated with propensity score weights:

WPS = 1
P(A | L)

In Stata:
mkspline ans=L, cubic nknots(5)
logistic A ans1 ans2 ans3 ans4
predict double phat, pr
gen psw=1/phat if A==1
replace psw=1/(1-phat) if A==0
stset T [pweight=psw], failure(D==2)

Standard methods apply to weighted data, but SE must take into
account the uncertainty in weights (e.g. using bootstrap)
• stcrreg A, compete(D==1) give a weighted test for difference in cause

specific cumulative incidence

21 / 28



Inverse probability weighting
• For baseline differences between groups, adjusted marginal effects
can be estimated with propensity score weights:

WPS = 1
P(A | L)

In Stata:
mkspline ans=L, cubic nknots(5)
logistic A ans1 ans2 ans3 ans4
predict double phat, pr
gen psw=1/phat if A==1
replace psw=1/(1-phat) if A==0
stset T [pweight=psw], failure(D==2)

Standard methods apply to weighted data, but SE must take into
account the uncertainty in weights (e.g. using bootstrap)
• stcrreg A, compete(D==1) give a weighted test for difference in cause

specific cumulative incidence

21 / 28



Inverse probability weighting
• For baseline differences between groups, adjusted marginal effects
can be estimated with propensity score weights:

WPS = 1
P(A | L)

In Stata:
mkspline ans=L, cubic nknots(5)
logistic A ans1 ans2 ans3 ans4
predict double phat, pr
gen psw=1/phat if A==1
replace psw=1/(1-phat) if A==0
stset T [pweight=psw], failure(D==2)

Standard methods apply to weighted data, but SE must take into
account the uncertainty in weights (e.g. using bootstrap)

• stcrreg A, compete(D==1) give a weighted test for difference in cause
specific cumulative incidence

21 / 28



Inverse probability weighting
• For baseline differences between groups, adjusted marginal effects
can be estimated with propensity score weights:

WPS = 1
P(A | L)

In Stata:
mkspline ans=L, cubic nknots(5)
logistic A ans1 ans2 ans3 ans4
predict double phat, pr
gen psw=1/phat if A==1
replace psw=1/(1-phat) if A==0
stset T [pweight=psw], failure(D==2)

Standard methods apply to weighted data, but SE must take into
account the uncertainty in weights (e.g. using bootstrap)
• stcrreg A, compete(D==1) give a weighted test for difference in cause
specific cumulative incidence

21 / 28



• For time-varying treatment regimes, more general inverse
probability of treatment weighting (IPTW) can be used for

P(T ā ≤ t, J = j) vs. P(T ā′ ≤ t, J = j)

• Inverse probability of censoring weighting (IPCW) for to
account for (regular or artificial) dependent censoring, using
time-dependent weights:

WC (t) =
t∏

k=1

P(not censored at k|baseline covariates)
P(not censored at k|covariates up to k)

Censoring can be seen as a time-dependent treatment:

ATE = P(Y a=1,c̄k =0̄
k = 1) vs. P(Y a=0,c̄k =0̄

k = 1)

See stteffects ipwra

• Standardisation/g-formula/robust methods are alternatives
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Options 1: Composite endpoints

• Eliminate the problem so that traditional time-to-event methods
apply (but argue for the relevance of the new endpoint):

stset T [pweight=psw], fail(D == 1,2) id(id)
sts graph, by(A) plot1opts(lcolor(black)) plot2opts(lcolor(red))
ytitle("Survival probability") xtitle("Time") legend(ring(0) pos(1))
title("") ylab(, nogrid) xlab(, nogrid) plotregion(lstyle(refline))
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Look at, for example, "death by any cause" or "cancer free
survival" and analyse as in simple survival settings
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sts graph, by(A) plot1opts(lcolor(black)) plot2opts(lcolor(red))
ytitle("Survival probability") xtitle("Time") legend(ring(0) pos(1))
title("") ylab(, nogrid) xlab(, nogrid) plotregion(lstyle(refline))
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Option 2: Cause specific cumulative incidence

• Allow for competing events:
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Look at difference between cumulative incidence curves
(usually reasonable to show curves for all event types)

stcompet is unfortunately not reacting well to weights, see stcrprep and
related functions by Lambert
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• Note: cumulative incidence easily generalises to more general
multi-state models, using the Aalen-Johansen estimator

(Gran et al. 2015, Hoff et al. 2022) :
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See multistate package by Crowther, Lambert and others for (mostly
flexible parametric?) options in Stata
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Option 3: More advanced estimands

• Direct effects under elimination of competing events as defined
by Young et al. (2020)
• Separable effects as defined by Stensrud et al. (2022):

A

AF2

AF1

F2(1)

F1(1)

F2(2)

F1(2)

L

(but more advanced estimands demand more assumptions)
• Maltzahn et al. (2024) studies separable and controlled direct

effects to estimate component specific effects on sickness absence
• Stoltenberg et al. with ongoing work on dynamic regimes based

on opioid saving drug prescriptions
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• As for estimating ATEs of time-varying treatments on
cumulative incidence, this is mostly straight forward

... as long as ’artificial censoring’ and IPCW can be applied
• G-formula or robust methods get’s more involved
Some online Stata code accompanying the book by Hernán and
Robins (2020), based on pooled logistic regression
See also sequential trials (Gran et al. 2010, Keogh et al. 2023)
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The extent of the problem

• In a review of all the 219 NEJM papers published in 2015, Schumacher
et al. (2016) found 192 (88%) had a primary time-to-event outcome and
136 used time-to-event methodology (62%)
51 had competing events and only 26 (51%) dealt with it adequately
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