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Hierarchical

Hierarchical (or multilevel) data can occur frequently in a wide range of research
disciplines:

In education, students can be clustered within schools and districts;

In longitudinal studies, repeated observations can be nested within study participants;

In medicine, patients can be clustered within hospitals, and then within regions;

Etc.

The units of analysis are usually individuals or observations (at the lowest level) who are
nested within contextual (or aggregate) units (at a higher level).
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Hierarchical Survival

Analogously, hierarchical survival data arise when we observe time to event data, recorded
at the lowest level and nested within one (or more) higher level units.
Examples, from the field of medicine:

Time to death in patients with cardiovascular disease nested within surgeons and
then within hospitals;

Time to blindness in patients with diabetic retinopathy, where both eyes are nested
within each subject;

Individual-patient-data (IPD) meta-analysis, where subjects are nested within the
different studies being combined;

Etc.
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Hierarchical Survival Models

Several methods have been proposed throughout the years to analyse hierarchical survival
data.
For the purposes of this presentation, we will focus on mixed-effects, proportional-hazards
survival regression models. These can be fit in Stata using a variety of built-in commands
(such as mestreg and gsem) and user-contributed commands (such as stmixed and
merlin).
One of the benefits of mixed-effects models is that they can be used to obtain both
subject-specific and population-level effects. Some other methods can only do the latter.
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Hierarchical Survival Models: Notation

Assuming a two-levels nesting structure (patients nested within hospitals), a mixed-effects
proportional hazards survival model can be defined as:

hij(t) = h0(t) exp(Xijβ + Zijbj)

where i indexes patients and j indexes hospitals.
h0(t) denotes a baseline hazard function.
Xij denotes a set of observed covariates with associated regression coefficients β, often
named fixed effects in medical statistics.
Zij denotes a set of k latent variables with associated random effects bj . Xij and Zij can
overlap, in principle.
Finally, the k random effects bj are assumed to follow a multivariate normal distribution
with mean zero and variance-covariance matrix Σb: bj ∼ Nk(0, Σb).
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Hierarchical Survival Models: Random Intercept Model

The following model is often referred to as a random intercept model:

hij(t) = h0(t) exp(Xijβ + bj)

In this case, the only random effect, bj , follows a univariate normal distribution.
This formulation is close to that of shared frailty survival models,

hij(t) = h0(t) exp(Xijβ)αj ,

where the frailty term, αj , acts multiplicatively: intuitively, exp(bj) = αj . Common
distributions for the frailty term are Gamma, log-Normal, etc. Shared frailty survival
models can be fit in Stata using built-in commands such as stcox and streg.
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Case Study
We illustrate hierarchical survival models in practice using a dataset that combines data
from several clinical trials in advanced ovarian cancer:

. list if patientID <= 5
+----------------------------------------------------------------------+
| patien~D trialID trt timeS statusS timeT statusT |
|----------------------------------------------------------------------|

1. | 1 2 0 .10515873 1 .18571429 1 |
2. | 2 2 0 .89523809 1 1.4087302 1 |
3. | 3 2 0 .07896825 1 .12619048 1 |
4. | 4 2 1 1.7392857 0 1.7392857 0 |
5. | 5 2 0 .09126984 1 .12738095 1 |

+----------------------------------------------------------------------+

Specifically, here we aim to study the effect of a certain treatment (trt) on
progression-free survival (timeS, statusS) while accounting for clustering within
different trials (trialID).
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stset Data
Given that we are working with survival data, we start with the usual stset command:

. stset timeS, failure(statusS == 1)

Survival-time data settings

Failure event: statusS==1
Observed time interval: (0, timeS]

Exit on or before: failure
--------------------------------------------------------------------------

1,192 total observations
0 exclusions

--------------------------------------------------------------------------
1,192 observations remaining, representing

977 failures in single-record/single-failure data
543.942 total analysis time at risk and under observation

At risk from t = 0
Earliest observed entry t = 0

Last observed exit t = 1.983333
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Modelling
Then, we fit a random-intercept hierarchical survival model:

hij(t) = h0(t) exp(trtijβ + bj)

for a certain ith subject from the jth trial. For this, we use the mestreg command and test
both an exponential and Weibull survival distribution for the baseline hazard function h0:

. mestreg trt || trialID:, dist(exp)
[ Output omitted... ]
. estimates store me_rint_exp

. mestreg trt || trialID:, dist(wei)
[ Output omitted... ]
. estimates store me_rint_wei

Using the stmixed command we could use/test additional parametric (such as the
Gompertz) or flexible parametric formulations for h0.
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Best-Fitting Model

The can then use estimates stats to calculate the AIC and BIC:

. estimates stats *

Akaike's information criterion and Bayesian information criterion

-----------------------------------------------------------------------------
Model | N ll(null) ll(model) df AIC BIC

-------------+---------------------------------------------------------------
me_rint_exp | 1,192 . -378.7514 3 763.5028 778.7529
me_rint_wei | 1,192 . -310.2967 4 628.5935 648.927

-----------------------------------------------------------------------------
Note: BIC uses N = number of observations. See [R] IC note.

For both information criteria, the lower the better fit. In this case, the Weibull model
seems to provide the better fit between the two, and we will be assuming so from now
onwards.
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Random Treatment Effect
For comparison purposes, we also fit the following random intercept and treatment model:

hij(t) = h0(t) exp[trtij(β + b1j) + b0j ]

In Stata:

. mestreg trt || trialID: trt, dist(wei) nohr cov(unstr)

. estimates store me_rboth_wei

This however did not fit significantly better, so we stick with the random intercept model:
. lrtest me_rboth_wei me_rint_wei

Likelihood-ratio test
Assumption: me_rint_wei nested within me_rboth_wei

LR chi2(2) = 0.55
Prob > chi2 = 0.7591
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Modelling Results (1)

. estimates restore me_rint_wei

. mestreg, notable

Mixed-effects Weibull PH regression Number of obs = 1,192
Group variable: trialID Number of groups = 50

Obs per group:
min = 2
avg = 23.8
max = 274

Integration method: mvaghermite Integration pts. = 7

Wald chi2(1) = 12.27
Log likelihood = -310.29674 Prob > chi2 = 0.0005
LR test vs. Weibull model: chibar2(01) = 18.97 Prob >= chibar2 = 0.0000
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Modelling Results (2)

. mestreg, noheader nohr

------------------------------------------------------------------------------
_t | Coefficient Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
trt | -.2256597 .0644333 -3.50 0.000 -.3519467 -.0993727

_cons | .5363975 .062564 8.57 0.000 .4137743 .6590208
-------------+----------------------------------------------------------------

/ln_p | -.2775082 .025443 -.3273755 -.2276409
-------------+----------------------------------------------------------------
trialID |

var(_cons)| .0470106 .0234363 .0176947 .1248956
------------------------------------------------------------------------------
LR test vs. Weibull model: chibar2(01) = 18.97 Prob >= chibar2 = 0.0000
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Modelling Results (3)

. mestreg, noheader

------------------------------------------------------------------------------
_t | Haz. ratio Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
trt | .7979896 .0514171 -3.50 0.000 .7033176 .9054052

_cons | 1.709836 .1069742 8.57 0.000 1.512516 1.932899
-------------+----------------------------------------------------------------

/ln_p | -.2775082 .025443 -.3273755 -.2276409
-------------+----------------------------------------------------------------
trialID |

var(_cons)| .0470106 .0234363 .0176947 .1248956
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 18.97 Prob >= chibar2 = 0.0000
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Modelling Results: Interpretation
The estimated hazard ratio for treatment was 0.798 (95% C.I.: 0.703, 0.905). We
interpret this as treated subjects having a hazard of event that is about 80% of that of
untreated patients.
Note that this hazard ratio must be interpreted as a conditional (on the random effects)
hazard ratio (that is, for a certain trial/cluster) and that proportional hazards only holds
conditionally.
At a population level, marginal hazards from a proportional hazards model are generally
not proportional.
The likelihood ratio test vs a model without random intercept supports the model with
random effects (Prob >= chibar2 = 0.0000).
_cons and \ln_p are the estimated (log-) coefficients for the baseline hazard Weibull
distribution (scale and shape, respectively).
var(_cons) is the estimated variance of the normal distribution that we assumed for the
random intercept. We will get back to this in a few slides.
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Predictions: Conditional vs Marginal

After fitting a survival model, we are usually interested in predicting either the hazard or
the survival function (more prediction types are of course possible). In the settings of
hierarchical models, however, we need to distinguish between two prediction types:
conditional or marginal (w.r.t. the random effects).
Specifically:

Conditional predictions require calculating the group-specific random effects, to
combine with the estimated fixed effects (i.e., the regression coefficients and
ancillary parameters). Sometimes we can obtain predictions for fixed values of the
random effects, e.g., by setting them to zero;

Marginal predictions are obtained by integrating out (i.e., marginalising over) the
random effects distribution. These are often referred to as population-level
predictions.
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Predictions: Conditional vs Marginal
. replace _t = 2
(1,192 real changes made)

. predict S_cond, surv conditional

. predict S_fixed, surv conditional(fixedonly)

. predict S_marg, surv marginal

. list patientID trialID trt S_* ///
> if patientID == 1 | patientID == 4 | patientID == 129 | patientID == 130

+-----------------------------------------------------------+
| patien~D trialID trt S_cond S_fixed S_marg |
|-----------------------------------------------------------|

1. | 1 2 0 .3446461 .0555253 .0623801 |
4. | 4 2 1 .4273943 .0995672 .1063518 |

129. | 129 1 0 .3370368 .0555253 .0623801 |
130. | 130 1 1 .4198474 .0995672 .1063518 |

+-----------------------------------------------------------+
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Predictions: Conditional Hazard
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Predictions: Marginal Hazard
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Predictions: Hazard Comparison
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Predictions: Hazard Ratios
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Predictions: Conditional Survival
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Predictions: Marginal Survival
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Predictions: Survival Comparison
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Contextual Effects
Hierarchical models are useful to take into account and explicitly model the correlation
between study units within the same cluster, such as each trial participants in our case
study.
The higher the variance between clusters, the stronger the evidence towards the existence
of a general contextual effect.
This contextual effect is named general because it reflects the influence of the cluster
context as a whole, without specifying any contextual characteristic other than the very
boundaries that delimit the cluster.
I will now introduce the following measures that are often used to quantify contextual
effects:

The estimated variance of the random effect(s);
The best linear unbiased predictions (BLUPs) of the random effects;
The median (across clusters) hazard ratio.
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Variance of the Random Intercept
. mestreg, noheader
------------------------------------------------------------------------------

_t | Haz. ratio Std. err. z P>|z| [95% conf. interval]
-------------+----------------------------------------------------------------
[ Output omitted... ]
-------------+----------------------------------------------------------------
trialID |

var(_cons)| .0470106 .0234363 .0176947 .1248956
------------------------------------------------------------------------------
Note: Estimates are transformed only in the first equation to hazard ratios.
Note: _cons estimates baseline hazard (conditional on zero random effects).
LR test vs. Weibull model: chibar2(01) = 18.97 Prob >= chibar2 = 0.0000

In the case study, the estimated variance of the random effects is .0470, with a 95% C.I.
of: (.0177, .1249). But:

The magnitude of the estimated variance depends on the scale of time;
This quantity is hard to interpret as it is.
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BLUPs

A more interpretable comparison is one involving best linear unbiased predictions (BLUPs)
of the random effects.
The BLUPs are predicted using a procedure that uses the fitted model coefficients and
the observed data.
In loose words, predicting the BLUPs means predicting a cluster-specific effect for the
latent, unobserved random effects. These predicted cluster effects can then be used
elsewhere:

In ranking,
In further predictions,
Etc.
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BLUPs in Stata
BLUPs (and their standard errors) can be predicted after mestreg using the following
code:

. predict b_trialID, reffects reses(se_b_trialID)
(calculating posterior means of random effects)
(using 7 quadrature points)
.
. // Tag distinct random effects, useful for plotting/ranking
. bysort trialID: gen plot_tag = _n == 1
.
. // Rank the predicted random effects
. egen trialID_rank = rank(b_trialID) if plot_tag == 1
(1,142 missing values generated)
.
. // Make confidence intervals for random effect values
. gen b_trialID_lci = b_trialID - invnormal(1 - 0.05 / 2) * se_b_trialID
. gen b_trialID_uci = b_trialID + invnormal(1 - 0.05 / 2) * se_b_trialID
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Ranked BLUPs
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Ranked Baseline 2-Years Survival
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Median Hazard Ratio

The median hazard ratio is a measure that can be for assessing the magnitude of the
general contextual (i.e., trial) effects when analysing survival data.
When a random intercept follows a normal distribution, this is calculated as:

MHR = exp
[√

2σ̂2ϕ−1(0.75)
]

where σ̂2 is the estimated variance of the random intercept and ϕ−1 is the inverse of a
standard normal cumulative distribution function.
Note that a MHR can take any positive value.
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Median Hazard Ratio: Estimation

The fitted variance of the random intercept can be extracted from e(b):

. display _b[/:var(_cons[trialID])]

.04701059

Then, we can calculate the median hazard ratio, and a confidence interval, using nlcom:

. nlcom exp(sqrt(2 * _b[/:var(_cons[trialID])]) * invnormal(0.75))

_nl_1: exp(sqrt(2 * _b[/:var(_cons[trialID])]) * invnormal(0.75))

------------------------------------------------------------------------------
_t | Coefficient Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
_nl_1 | 1.229759 .0633974 19.40 0.000 1.105502 1.354015

------------------------------------------------------------------------------
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Median Hazard Ratio: Interpretation

. nlcom exp(sqrt(2 * _b[/:var(_cons[trialID])]) * invnormal(0.75))

------------------------------------------------------------------------------
_t | Coefficient Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
_nl_1 | 1.229759 .0633974 19.40 0.000 1.105502 1.354015

------------------------------------------------------------------------------

This can be interpreted as follows:

The median relative change in the hazard of the outcome between a subject from a
trial at a higher risk for the outcome and an identical subject in a trial at a lower risk
for the outcome is 1.230 (95% C.I.: 1.106, 1.354).

This is comparable to the effect of treatment, where the hazard ratio was 0.780
(95% C.I.: 0.703, 0.905) or 1.253 (inverting treatment, 95% C.I.: 1.104, 1.422).
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Conclusions

In conclusion, today we have seen:

How to fit hierarchical survival models using Stata’s built-in mestreg command;

How to obtain a variety of post-estimation predictions;

Differences between conditional and marginal predictions;

Examples of contextual effects quantifying differences between clusters;

Finally, the case study results can be replicated using code and data that is openly
available on GitHub: https://github.com/RedDoorAnalytics/2023-nesc-hsurv
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