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Introduction
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Aim

This talk was an excuse to review my own Stata packages, with the aim to
improve them, motivated by some of our work at RDA

This talk was also an excuse to force me to finish two new packages, again,
because we’re using them at RDA

Unsurprisingly, I mostly failed at both
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Health Technology Assessment

Health technology assessment (HTA) is a systematic and multidisciplinary
evaluation of the properties of health technologies and interventions covering
both their direct and indirect consequences

It is a multidisciplinary process that aims to determine the value of a health
technology and to inform guidance on how these technologies can be used in
health systems around the world.

It has been described as a bridge that connects the world of research to that
of policy making.

https://www.who.int/health-topics/health-technology-assessment
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Health Technology Assessment

A framework for HTA

Analysis of a clinical trial with a survival outcome

stmerlin

We might need bayes if we have prior information

Combine and compare with existing evidence

(Network) meta-analysis network, meta
Matching adjusted indirect comparisons ?

Build a natural history model

Required for assessing lifetime costs - multistate
Markov models are the default

Conduct microsimulation & probabilistic sensitivity analysis

survsim
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A framework for HTA in Stata
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merlin
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An example

data from 312 patients with PBC collected at the Mayo Clinic 1974-1984
(Murtaugh et al. (1994))

158 randomised to receive D-penicillamine and 154 to placebo

survival outcome is all-cause death, with 140 events observed

we’re going to pretend we have competing causes of death - cancer and other
causes

1,945 measurements of serum bilirubin, among other things
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data

id time logb prothr~n trt stime cancer other

1 0 2.674149 12.2 D-penicil 1.09517 1 0
1 .525682 3.058707 11.2 D-penicil . . .

2 0 .0953102 10.6 D-penicil 14.1523 0 1
2 .498302 -.2231435 11 D-penicil . . .
2 .999343 0 11.6 D-penicil . . .
2 2.10273 .6418539 10.6 D-penicil . . .
2 4.90089 .9555114 11.3 D-penicil . . .
2 5.88928 1.280934 11.5 D-penicil . . .
2 6.88588 1.435084 . D-penicil . . .
2 7.8907 1.280934 . D-penicil . . .
2 8.83255 1.526056 . D-penicil . . .

Let’s fit 12 different models, without changing the dataset
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merlin (logb /// log serum bilirubin
time /// covariate
, /// options
family(gaussian) /// distribution

)
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merlin (logb time time#trt M1[id]@1 /// model 1
time#M2[id]@1 , ///
family(gaussian) ///

) ///
(pro rcs(time, df(3)) M3[id]@1 /// model 2

, family(gamma) ///
) ///
(stime trt ///

trt#fp(stime, power(0)) /// model 3: cause 1
dEV[logb] EV[pro] /// tde
, family(rp, df(3) /// distribution

failure(other)) /// event indicator
) ///
(stime trt /// model 4: cause 2

trt#rcs(stime, df(3) log) /// tde
EV[logb] iEV[pro] /// associations
, family(weibull, /// distribution

failure(cancer)) /// event indicator
) ///
, ///
covariance(unstructured)
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merlin needs a refresh

It can do a lot

This is great
This is not so great

Priorities

Making it faster
Allowing factor variables

Importantly, everything that comes next uses merlin under the hood, so if
merlin gets better, everything else does.
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stmerlin
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Flexible survival model with stmerlin

. webuse brcancer
(German breast cancer data)

. quietly stset rectime, failure(censrec)

. stmerlin hormon, distribution(rp) df(3)
Obtaining initial values
variables created: _rcs1_1 to _rcs1_3

Fitting full model:

Iteration 0: Log likelihood = -2632.0961
Iteration 1: Log likelihood = -2612.0924
Iteration 2: Log likelihood = -2607.9978
Iteration 3: Log likelihood = -2607.9714
Iteration 4: Log likelihood = -2607.9714

Survival model Number of obs = 686
Log likelihood = -2607.9714

Coefficient Std. err. z P>|z| [95% conf. interval]

_t:
hormon -.3613746 .1248801 -2.89 0.004 -.606135 -.1166142
_cons -1.192909 .0814642 -14.64 0.000 -1.352576 -1.033243

Warning: Baseline spline coefficients not shown - use ml display
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Cox model with multiple timescales

. set obs 10000
Number of observations (_N) was 0, now 10,000.

. gen trt = runiform()>0.5

. gen agec = rnormal(50,5) - 50

. gen yearc = 1990 + floor(20*runiform()) - 2000

. survsim stime died, maxtime(5) cov(trt -0.5) ///
> hazard( 0.1:*1.2:*{t}:^0.2 :* ///
> exp( ///
> 0.1 :* (agec :+ {t}) ///
> :+ trt :* 0.1 :* (agec :+ {t}) ///
> :- 0.1 :* (yearc :+ {t}) ///
> ) ///
> )

. qui stset stime, f(died)

. stmerlin trt, dist(cox) time2(df(2) offset(agec) time noorthog) ///
> time3(df(2) offset(yearc) time noorthog)
Obtaining initial values

Fitting full model:

Iteration 0: Log likelihood = -43558.366
Iteration 1: Log likelihood = -43558.364

Survival model Number of obs = 10,000
Log likelihood = -43558.364

Coefficient Std. err. z P>|z| [95% conf. interval]

_t:
trt -.1031376 .0282546 -3.65 0.000 -.1585155 -.0477596

rcs():1 .1652705 .0101485 16.29 0.000 .1453797 .1851613
rcs():2 .0000487 .0000226 2.16 0.031 4.47e-06 .000093
rcs():1 -.0949912 .0064554 -14.72 0.000 -.1076435 -.0823389
rcs():2 -4.70e-06 .0000326 -0.14 0.885 -.0000686 .0000592
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multistate
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multistate and HTA

Markov models are ubiquitous in HTA

This assumption is extremely strong, and extremely unlikely

Estimation, prediction and simulation of a non-Markov is not easy in the
slightest
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multistate and HTA

predictms, models(m1 m2 m3) at1(trt 1) probability
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survsim

. survsim, model(m1) maxtime(15)
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Bayesian flexible survival analysis

Bayesian methods are hugely popular in HTA

Particularly in meta-analysis

Incorporating prior information is a huge strength, particularly in rare diseases
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Bayesian flexible survival analysis - morgana
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Syncing bayesmh with a likelihood evaluator
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Bayesian flexible survival model with morgana & stmerlin

. morgana : stmerlin hormon, distribution(rp) df(3)
Obtaining initial values
variables created: _rcs1_1 to _rcs1_3

Burn-in ...
Simulation ...
Model summary

Likelihood:
_t ~ morgana_ll({hormon},{_cons1},{_rcs_1_1},{_rcs_1_2},{_rcs_1_3})

Prior:
{hormon _cons1 _rcs_1_1 _rcs_1_2 _rcs_1_3} ~ normal(0,10000)

Bayesian survival regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 686
Acceptance rate = .2217
Efficiency: min = .05387

avg = .07593
Log marginal-likelihood = -2644.8553 max = .09965

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

hormon -.364192 .1251727 .003965 -.3624191 -.6164516 -.1251256
_cons1 -1.200934 .0787249 .002947 -1.199913 -1.361028 -1.056648

_rcs_1_1 1.61066 .1247576 .005375 1.61113 1.374546 1.865117
_rcs_1_2 .5887768 .1131379 .004268 .5908103 .3721069 .8272459
_rcs_1_3 -.051528 .03358 .001155 -.0512411 -.1216544 .0132672
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Adding an informative prior on {hormon}

. morgana, prior({hormon}, normal(-0.5,0.03)) : ///
> stmerlin hormon, distribution(rp) df(3)
Obtaining initial values
variables created: _rcs1_1 to _rcs1_3

Burn-in ...
Simulation ...
Model summary

Likelihood:
_t ~ morgana_ll({hormon},{_cons1},{_rcs_1_1},{_rcs_1_2},{_rcs_1_3})

Priors:
{hormon} ~ normal(-0.5,0.03)

{_cons1 _rcs_1_1 _rcs_1_2 _rcs_1_3} ~ normal(0,10000)

Bayesian survival regression MCMC iterations = 12,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 10,000
Number of obs = 686
Acceptance rate = .1886
Efficiency: min = .0246

avg = .04944
Log marginal-likelihood = -2638.9597 max = .06889

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

hormon -.4049185 .1003096 .003822 -.4089641 -.5980976 -.2106219
_cons1 -1.18509 .0775748 .003037 -1.183455 -1.340632 -1.039873

_rcs_1_1 1.604934 .1259947 .005818 1.59776 1.369986 1.872174
_rcs_1_2 .5846417 .1146586 .005626 .5770516 .3746932 .8246799
_rcs_1_3 -.0520245 .0357107 .002277 -.051204 -.1203669 .0189753
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bayesgraph diagnostic {hormon}
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Next steps with bayesmh

What I would like
. predict s, survival time(timevar) at(hormon 1)

Not so easy to generalise

Feasible for one specific timepoint

Multilevel & multiple outcomes
. morgana : merlin (y ... M1[id]@1, family(gaussian)) ///

(...)(...)
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Summary & future work

The ecosystem around merlin is growing, along with its user base

There’s a lot to do to make it more usable

I promised a new command called maic for Matching-Adjusted Indirect
Comparison
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