rbicopula: Recursive bivariate copula estimation and decomposition of marginal effects

Mustafa Coban

Institute for Employment Research, Germany

mustafa.coban@iab.de

github.com/cobanomics

Northern European Stata Conference 2022: October 4, 2022

Table of Contents

- 1 Motivation
- 2 Econometric Specification
- 3 The rbicopula package
- 4 Application and Examples
- 5 Conclusion and Future Work

Motivation

Effects of interest

1. What we assume

- Effect of a binary or treatment variable on a binary outcome variable
- Treatment variable itself is endogenous
- Unobservables may correlate with treatment and outcome equation
- Bivariate normal distribution may not fit our data

What we want

- Use different bivariate distributions and compare results
- Find the best-fitting bivariate distribution for our data
- Compute treatment effect and marginal effect of independent variables

What doesn't work:

- bicop doesn't allow margins as postestimation command
- rbiprobit only allows bivariate normal distribution
- ivprobit inapproriate; treatment variable is binary

ssc install rbiprobit

Contribution

A new Stata package

- rbicopula estimates RBMs like bicop or rbiprobit
 - allows different bivariate distributions or copulas
 - ightharpoonup calculates Kendall's au as a comparison criterion of estimation results
 - allows weights (pw,fw,iw)
 - provides various variance estimators (vce)
 - bootstrap, jackknife, and svy prefix are allowed
- rbicopula accounts for recursive nature in postestimation
- Postestimation commands enable
 - Correct predictions
 - Computation of different treatment effects
 - Decomposition of average marginal effects of independent variables
 - Standard errors using the delta method or bootstrapping

Table of Contents

- 1 Motivation
- 2 Econometric Specification
- 3 The rbicopula package
- 4 Application and Examples
- 5 Conclusion and Future Work

Recursive bivariate model

The Model

A structural model with endogenous explanatory treatment variable y_2

$$y_1^{\star}=x'eta+lpha y_2+\epsilon_1$$
 , $y_1=1\Big[y_1^{\star}>0\Big]$ (1)

$$y_2^{\star}=z^{\prime}\gamma+\epsilon_2$$
 , $y_2=1\Big[y_2^{\star}>0\Big]$ (2)

with
$$\begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix} \sim F(\epsilon_1, \epsilon_2)$$

- ▶ dependence or correlation between ϵ_1 and ϵ_2 induces endogeneity
- flexible parametric distribution assumption for $F(\epsilon_1, \epsilon_2)$
- \triangleright x' and z' can share some or all independent variables
- ▶ Greene (2018) notes that endogenous nature of y_2 can be ignored
- ▶ Han and Lee (2019): estimates are at best weakly identified if x = z

October 12, 2022

Recursive bivariate model

Treatment Effects: ATE, ATET, and ATEC

Average treatment effect (ATE)

$$\mathsf{ATE} = \mathsf{Pr}(y_1 = 1|x')|_{y_2 = 1} - \mathsf{Pr}(y_1 = 1|x')|_{y_2 = 0}$$

- Ceteris-paribus scenario over full sample
- Difference between marginal probabilities of y₁
- Effect of discrete change in treatment holding all other observed and unobserved variables constant
- 2. Average treatment effect on the treated (ATET)

atet

Average treatment effect on conditional probability of outcome success (ATEC)

Decomposition of Marginal Effects

Joint and Conditional Probabilities

- Independent variable d appears in both x' and z'
- Decomposition of total marginal effects on the probabilities (except marginal probabilities) are then
 - 1. Continuous Variables (see Greene, 2018)

$$\mathsf{ME} = \frac{\partial \mathsf{Pr}}{\partial \begin{pmatrix} x_d \\ z_d \end{pmatrix}} = \underbrace{\frac{\partial \mathsf{Pr}}{\partial x_d}}_{\mathsf{direct effect}} + \underbrace{\frac{\partial \mathsf{Pr}}{\partial z_d}}_{\mathsf{indirect effect}}$$

2. Discrete Variables (see Hasebe, 2013; Edwards et al., 2019)

$$\mathsf{ME} = \underbrace{ [\mathsf{Pr}\,|_{\mathsf{x}_d=1} - \mathsf{Pr}\,|_{\mathsf{x}_d=0}]}_{ \mbox{direct effect}} + \underbrace{ [\mathsf{Pr}\,|_{\mathsf{z}_d=1} - \mathsf{Pr}\,|_{\mathsf{z}_d=0}]}_{ \mbox{indirect effect}}$$

Copula Functions

Basics

Bivariate Density of Copulas

Copula Functions

Copulas

Bivariate Density of Copulas (con't)

Table of Contents

- 1 Motivation
- 2 Econometric Specification
- 3 The rbicopula package
- 4 Application and Examples
- 5 Conclusion and Future Work

Basic Syntax

```
rbicopula depvar [=] [indepvars] [if] [in] [weight]
, endogenous(depvar_en [=] [indepvars_en] [, enopts]) [options]
```

- depvar and depvar_en have to be 0/1 variables
- depvar_en automatically added to outcome equation as factor-variable
- copula() allows 9 different copula functions, e.g. gaussian, fgm,...
- ► Factor variables and time-series operators allowed
- bootstrap, jackknife, and svy prefix are allowed
- Variance estimators: robust, cluster robust, bootstrap, ...
- Linear constraints are applicable

Postestimation Commands

Margins and Treatment Effects

rbicopula margdec [if] [in] [weight] [, response_options options]
rbicopula tmeffects [if] [in] [weight] [, tmeffect(effecttype) options]

rbiprobit margdec options

effect(effecttype) specify type of effect; effecttype may be total, direct,

or indirect; default is total

predict(pred_opt) estimate margins for predict, pred_opt;

multiple predict not applicable

dydx(varlist) estimate marginal effect of variables in varlist

. . .

rbiprobit tmeffects options

tmeffect(effecttype) specify type of effect; effecttype may be ate, atet,

or atec; default is ate

Table of Contents

- 1 Motivation
- 2 Econometric Specification
- 3 The rbicopula package
- 4 Application and Examples
- 5 Conclusion and Future Work

rbicopula output table

empirical application

```
. use "https://cobanomics.github.io/rbicopula/data/ess7_uk.dta", clear (Modified excerpt from European Social Survey Wave 7 for United Kingdom)
```

- . global indeplist c.age##c.age i.female i.urban educyrs rigleft i.lbf
- . rbicopula redist = \$indeplist hhincdec hhmemb ///
 > , endog(imcult = \$indeplist i.pareduc imcont) copula(frank) nolog

Recursive Bivariate Copula Regression (Copula: FRANK)

	Number of obs	=	1,256
	Wald chi2(19)	=	402.80
Log likelihood = -1118.4116	Prob > chi2	=	0.0000

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
redist	i					
imcult Culture undermined age	-1.315288 -0387031	.2477447	-5.31 2.59	0.000	-1.800859 .0094029	8297176 .0680033
c.age#c.age	000319	.0001386	-2.30	0.021	0005906	0000474
female Female	 0133382 	.0828927	-0.16	0.872	175805	.1491286
urban [1] (Sub)Urban educyrs rigleft	.0628647 .0034365 .1461538	.0908488 .0112123 .0261515	0.69 0.31 5.59	0.489 0.759 0.000	1151957 0185391 .0948977	.2409252 .0254122 .1974098
lbf Employed hhincdec hhmemb _cons	0534302 0587576 0016695 -1.369986	.1010681 .0162586 .0383488 .6219236	-0.53 -3.61 -0.04 -2.20	0.597 0.000 0.965 0.028	2515201 0906238 0768317 -2.588934	.1446597 0268913 .0734928 1510378

rbicopula output table (con't)

imcult						
age	.0048037	.01644	0.29	0.770	0274181	.0370254
c.age#c.age	0000514	.0001572	-0.33	0.744	0003596	.0002568
female Female	.3517705	.0882759	3.98	0.000	.1787528	.5247881
urban [1] (Sub)Urban educyrs rigleft	1568613 0594006 1364683	.1011722 .0114453 .021957	-1.55 -5.19 -6.22	0.121 0.000 0.000	3551552 081833 1795033	.0414326 0369682 0934333
lbf Employed	 1580659	.1134969	-1.39	0.164	3805157	.0643839
pareduc Academic parent imcont _cons	1861031 0807959 2.931108	.0952308 .0254167 .4854207	-1.95 -3.18 6.04	0.051 0.001 0.000	3727521 1306116 1.979701	.0005459 0309801 3.882516
/delta	5.312024	1.937433	2.74	0.006	1.514725	9.109323
theta	5.312024	1.937433			1.514725	9.109323
tau	.4757469					
Wald test of theta=0	: chi2(1) = 7	.51738		Prol	> chi2 = 0.	0061

- In ML estimation dependence parameter θ is not directly estimated, but the ancillary parameter δ
- estimated dependence between error terms is positive and significantly different from zero
- Kendall's τ denoted by tau; there is no τ for Plackett copula

Copula Choice

Kendall's τ

Comparison of Measures of Fit

	Copula	θ	τ	Wald-test p-value	log-likelihood	AIC	
	Gaussian	0.540	0.363	0.001	-1120.12	2284.24	
	FGM	1.000	0.222	0.000	-1120.17	2284.35	
	Plackett	11.314	_	0.175	-1118.34	2280.68	
	Clayton	0.441	0.181	0.123	-1121.55	2287.10	
	Frank	5.312	0.476	0.006	-1118.41	2280.82	
	Gumbel	1.957	0.489	0.015	-1118.65	2281.30	
	Joe	3.840	0.601	0.026	-1117.84	2279.69	
	АМН	0.826	0.245	0.000	-1120.37	2284.75	

Postestimation: Treatment effects

atet and atec

rbicopula tmeffects: Average treatment effects (ATE)

```
. rbicopula tmeffects, tmeffect(ate)
Treatment effect
                                        Number of obs = 1,256
Model VCE : OIM
Expression : Pr(redist=1), predict(pmarg1)
Effect : Average treatment effect
dydx w.r.t. : 1.imcult
                    Delta-method
          dy/dx Std. Err. z P>|z| [95% Conf. Interval]
       ate | -.4385982 .0902992 -4.86 0.000 -.6155814 -.2616151
```

Postestimation: Marginal effects

rbicopula margdec: Average marginal effects (continuous independent variable)

```
. rbicopula margdec, dydx(rigleft) predict(pl1) effect(direct)
Average marginal effects
                                   Number of obs = 1,256
Model VCE : OIM
Expression : Pr(redist=1,imcult=1), predict(p11)
dv/dx w.r.t. : rigleft
                   Delta-method
           dy/dx Std. Err. z P>|z| [95% Conf. Interval]
  rigleft | .0327624 .0053263 6.15 0.000 .0223231 .0432017
. rbicopula margdec, dydx(rigleft) predict(p11) effect(indirect)
                                   Number of obs = 1,256
Average marginal effects
Model VCE : OIM
Expression : Pr(redist=1,imcult=1), predict(p11)
dv/dx w.r.t. : rigleft
                    Delta-method
           | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
   rigleft | -.0015215 .0010085 -1.51 0.131 -.003498 .0004551
```

Postestimation: Marginal effects

don't use margins

rbicopula margdec: Average marginal effects (continuous independent variable)

```
. rbicopula margdec, dvdx(rigleft) predict(pl1) effect(total)
Average marginal effects
                                         Number of obs = 1,256
Model VCE : OIM
Expression : Pr(redist=1,imcult=1), predict(p11)
dv/dx w.r.t. : rigleft
                      Delta-method
          | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
    rigleft | .0312409 .0049005 6.38 0.000 .0216362 .0408457
```

- Direct effect of rigleft is positive
- Indirect effect of rigleft is negative
- Indirect effect doesn't offset direct effect entirely

Postestimation: Plots

rbicopula margdec and rbicopula tmeffects: Marginsplots

- Marginsplot of total average marginal effects
 - . rbicopula margdec, dydx(rigleft hhincdec lbf) pr(p11) eff(total)
 - . marginsplot
- Marginsplot of indirect average marginal effects
 - . rbicopula margdec, dydx(female pareduc) pr(p10) eff(indirect)
 - . marginsplot
- Marginsplot of average treatment effect
 - rbicopula tmeffects, tmeffect(ate)
 - . marginsplot

Table of Contents

- 1 Motivation
- 2 Econometric Specification
- 3 The rbicopula package
- 4 Application and Examples
- 5 Conclusion and Future Work

Conclusion and Future Work

Conclusion

- rbicopula identified even without IV (theoretically)
- Without IV: identification of rbicopula decisively based on parametric distribution assumption
- ► Three different treatment effects computable
- Decomposition of marginal effects gives insight about insignificant total marginal effects

Future Work

- 2.1 More options for postestimation commands
 - exp(), at(), ...
- 2.2 More Measures of Dependence
 - \triangleright Blomqvist's β and Spearman's ρ
- 2.3 Goodness-of-fit-tests
 - Vuong test, Clarke test, and further model selection methods

Thank you

Version 1.1.0 available

net install rbicopula, from("https://cobanomics.github.io/rbicopula/")

For Frank copula you have to additionally install integrate

ssc install integrate, replace

- github.com/cobanomics
- @cobanomics

- mustafa.coban@iab.de
- mustafacoban.de

References

- Alrasheed, D. S. (2019). The relationship between neighborhood design and social capital as measured by carpooling. *Journal of Regional Science*, 59(5):962–987.
- Blasch, J., Filippini, M., and Kumar, N. (2019). Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances. *Resource and Energy Economics*, 56(C):39–58.
- Chiburis, R. C., Das, J., and Lokshin, M. (2012). A practical comparison of the bivariate probit and linear IV estimators. *Economics Letters*, 117(3):762–766.
- Edwards, L. N., Hasebe, T., and Sakai, T. (2019). Education and Marriage Decisions of Japanese Women and the Role of the Equal Employment Opportunity Act. *Journal of Human Capital*, 13(2):260–292.
- Greene, W. H. (2018). Econometric Analysis. Pearson, New York.
- Han, S. and Lee, S. (2019). Estimation in a generalization of bivariate probit models with dummy endogenous regressors. *Journal of Applied Econometrics*, 34(6):994–1015.
- Hasebe, T. (2013). Marginal effects of a bivariate binary choice model. *Economics Letters*, 121(2):298–301.

Formula of Treatment Effects: ATET

Following Chiburis et al. (2012) the average treatment effect on the treated is defined by

$$\begin{split} \mathsf{ATET} &= \mathsf{Pr}(y_1 = 1, y_2 = 1 | x', z')|_{y_2 = 1} - \mathsf{Pr}(y_1 = 1, y_2 = 1 | x', z')|_{y_2 = 0} \\ &= \left\{ 1 - \Phi(-x`\beta - \alpha) - \Phi(-z'\gamma) + C\left[\Phi(-x`\beta - \alpha), \Phi(-z'\gamma); \theta\right] \right\} \\ &- \left\{ 1 - \Phi(-x`\beta) - \Phi(-z'\gamma) + C\left[\Phi(-x`\beta), \Phi(-z'\gamma); \theta\right] \right\} \quad \forall \ y_{2i} = 1 \end{split}$$

- Ceteris-paribus scenario over sub-sample of treated
- ▶ Effect of discrete change in treatment on the adjusted joint probability

Formula of Treatment Effects: ATEC

Following Alrasheed (2019) the average treatment effect on conditional probability of outcome success (ATEC) is defined by

ATEC =
$$\frac{\Pr(y_1 = 1, y_2 = 1 | x', z')}{\Pr(y_2 = 1 | z')} - \frac{\Pr(y_1 = 1, y_2 = 0 | x', z')}{\Pr(y_2 = 0 | z')}$$

- Accounts for selection on unobservables
- ▶ Utilizes conditional probabilities of the outcome $Pr(y_{1i} = 1 | y_{2i} = s)$ for s = 0, 1 over full sample.
- Effect of a discrete change in treatment, holding only the observed variables constant
- Imposing no constraint on dependence between equations to account for changes in unobserved variables as a consequence of the treatment
- ► ATEC collapses to ATE if equations are independent

Basics of Copula Functions

$$F(\epsilon_1, \epsilon_2) = C[F_1(\epsilon_1), F_2(\epsilon_2); \theta] = C[u, v; \theta]$$

- allows non-normal dependence between error terms
- binds univariate marginal distributions u and v to generate a bivariate distribution
- ▶ Depending on copula, the dependence parameter θ has different intervals
- Implementation in rbicopula
 - univariate marginal distribution functions are identical
 - univariate marginal distributions are normal

$$F_j(\epsilon_j) = \Phi(\epsilon_j)$$

Available Copulas in rbicopula

Copula	Function $C(u, v)$	Range of θ	Independence
Product	и·v	N/A	N/A
Gaussian	$\Phi_2\left[\Phi^{-1}(u),\Phi^{-2}(v);\theta\right]$	-1 < heta < +1	$\theta = 0$
FGM	$uv\cdot [1+ heta\cdot (1-u)\cdot (1-v)]$	$-1 \leq \theta \leq +1$	$\theta = 0$
Plackett	$\frac{r-\sqrt{r^2-4uv\theta\cdot(\theta-1)}}{2(\theta-1)}$	$\theta \in (0,+\infty)$	heta=1
Clayton	$(u^{-\theta}+v^{-\theta}-1)^{-1/\theta}$	$ heta\in(0,+\infty)$	$\theta = 0$
Frank	$-rac{1}{ heta}\cdot ext{ln}\left[1+rac{(e^{- heta u}-1)\cdot (e^{- heta v}-1)}{e^{- heta}-1} ight]$	$ heta\in (-\infty,+\infty)ackslash\{0\}$	$\theta = 0$
Gumbel	$\exp\left\{-\left[\left(-\ln(u) ight)^{ heta}+\left(-\ln(v) ight)^{ heta} ight]^{1/ heta} ight\}$	$1 \leq \theta < \infty$	heta=1
Joe	$1 - \left[\left(\widetilde{\textit{u}} \right)^{\theta} + \left(\widetilde{\textit{v}} \right)^{\theta} - \left(\widetilde{\textit{u}} \widetilde{\textit{v}} \right)^{\theta} \right]^{1/\theta}$	$1 \leq heta < \infty$	heta=1
AMH	$uv\cdot [1- heta\cdot (1-u)\cdot (1-v)]^{-1}$	$-1 \leq \theta \leq +1$	$\theta = 0$

where $r = 1 + (\theta - 1)(u + v)$ for Plackett copula and $\tilde{u} = 1 - u$, $\tilde{v} = 1 - v$ for Joe copula

Predictions

predict [type] newvar[if] [in] [, statistic]

statistic

```
Pr(depvar = 1, depvar en = 1); the default
p11
             Pr(depvar = 1, depvar en = 0)
p10
             Pr(depvar = 0, depvar en = 1)
p01
00q
             Pr(depvar = 0, depvar en = 0)
             Pr(depvar = 1); marginal success probability for outcome eq.
pmarg1
pmarg2
             Pr(depvar en = 1); marginal success probability for treatment eq.
pcond1
             Pr(depvar = 1 | depvar en = 1)
pcond2
             Pr(depvar en = 1 | depvar = 1)
xb1
             linear prediction for outcome eq.
xh2
             linear prediction for treatment eq.
```

...

Predictions of Interest

1. Joint Probabilities

For s = 0, 1 and t = 0, 1 joint probabilities are given by

$$\Pr(y_1 = s, y_2 = t | x, z) = st - tq_1 \cdot u - sq_2 \cdot v + q_1q_2 \cdot C(u, v; \theta)$$

where

$$q_1 = 2s - 1$$

$$q_2 = 2t - 1$$

$$v = \Phi(-z'\gamma)$$

$$u = \begin{cases} \Phi(-x'\beta - \alpha) & \text{if } t = 1\\ \Phi(-x'\beta) & \text{if } t = 0 \end{cases}$$

Predictions of Interest

2. Conditional Probabilities

$$Pr(y_1 = 1 | y_2 = 1, x, z) = \frac{Pr(y_1 = 1, y_2 = 1 | x, z)}{\Phi(z'\gamma)}$$

$$Pr(y_2 = 1 | y_1 = 1, x, z) = \frac{Pr(y_1 = 1, y_2 = 1 | x, z)}{\Phi(x'\beta + \alpha)}$$

3. Marginal Probabilities

$$\Pr(y_1 = 1|x) = \Phi(x'\beta + \alpha y_2)$$

 $\Pr(y_2 = 1|z) = \Phi(z'\gamma)$

Predictions of Interest

4. Unconditional Mean Function (see Blasch et al., 2019; Alrasheed, 2019)

$$\begin{split} E[y_1|x,z] &= \Pr(y_2 = 1|z) \cdot E[y_1|y_2 = 1,x,z] \\ &+ \Pr(y_2 = 0|z) \cdot E[y_1|y_2 = 0,x,z] \\ &= \Pr(y_1 = 1,y_2 = 1|x,z) + \Pr(y_1 = 1,y_2 = 0|x,z) \\ &= \Phi_2(x'\beta + \alpha,z'\gamma,\rho) + \Phi_2(x'\beta,-z'\gamma,-\rho) \end{split}$$

An empirical application

1. Research question

Does the perception of immigrants as a hazard of national culture effect natives' preference for redistribution?

2. Data

- European Social Survey (Wave 7, 2014)
- Individual Data from the United Kingdom
- Data adjusted for demonstration purposes
- Sample restricted to respondents with no migration background

The Model

- Binary outcome variable: redist
 Should the government reduce difference in income levels?
 (Agree = 1, Disagree = 0)
- Binary treatment variable: imcult Do immigrants undermine or enrich country's cultural life? (Undermine = 1, Enrich = 0)

Varlist of independent variables

- Independent variables common to both equations
 - Age (age)
 - ► Gender (female)
 - ► Place of residence (urban)
 - Years of education (educyrs)
 - Main activity, last 7 days (1bf)
 - Self-placement on political left-right scale (rigleft)
- Independent Variables only in treatment equation
 - At least one parent is academic (pareduc)
 - Frequency of contact with immigrants beyond workplace and friendships (imcont)
- Independent Variables only in outcome equation
 - Household income (hhincdec)
 - Number of household members (hhmemb)

Kendall's Rank Correlation or Kendall's τ

$$au = \Pr \left[(X_1 - X_2)(Y_1 - Y_2) > 0 \right] - \Pr \left[(X_1 - X_2)(Y_1 - Y_2) < 0 \right]$$

where (X_1, Y_1) and (X_2, Y_2) are independent pairs of random variables from C

- Measure of degree of dependence
- Allows comparison of dependence pattern between different copulas
- ▶ Limited to a range of [-1, 1]
- Negative (positive) values indicate negative (positive) dependence
- ightharpoonup au = 0 indicates independence

Important: For Frank copula you must additionally install integrate ssc install integrate, replace

rbicopula tmeffects: ATET and ATEC

```
. rbicopula tmeffects, tmeffect(atet)
Treatment effect
                                           Number of obs = 1,026
Model VCE : OIM
Expression : Pr(redist=1,imcult=1|imcult=1) - Pr(redist=1,imcult=1|imcult=0)
Effect : Average treatment effect on the treated
dvdx w.r.t. : 1.imcult
                       Delta-method
            | dy/dx Std. Err. z P>|z| [95% Conf. Interval]
       atet | -.3977149 .0867208 -4.59 0.000 -.5676845 -.2277453
. rbicopula tmeffects, tmeffect(atec)
Treatment effect
                                        Number of obs = 1.256
Model VCE : OIM
Expression : Pr(redist=1|imcult=1) -Pr(redist=1|imcult=0), predict(pcond1) -predict(pc
> ond10)
Effect : Average treatment effect on conditional probability
dydx w.r.t. : 1.imcult
                     Delta-method
           dy/dx Std. Err. z P>|z| [95% Conf. Interval]
      atec | -.0184466 .0302367 -0.61 0.542 -.0777095 .0408163
```


Incorrect standard errors using margins

```
. margins, dydx(rigleft) predict(pl1)
Average marginal effects
                                       Number of obs = 1,256
Model VCE : OIM
Expression : Pr(redist=1,imcult=1), predict(p11)
dy/dx w.r.t. : rigleft
                      Delta-method
            dy/dx Std. Err. z P>|z| [95% Conf. Interval]
    rigleft | .0312409 .004587 6.81 0.000 .0222505 .0402314
. rbicopula margdec, dvdx(rigleft) predict(pl1) effect(total)
                                        Number of obs = 1,256
Average marginal effects
Model VCE : OIM
Expression : Pr(redist=1,imcult=1), predict(p11)
dv/dx w.r.t. : rigleft
                      Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]
    rigleft | .0312409 .0049005 6.38 0.000 .0216362
```