
1/21

Flexible and fast estimation of quantile treatment effects:

The rqr and rqrplot commands

Nicolai T. Borgen 1 Andreas Haupt 2 Øyvind Wiborg 1

1University of Oslo
2Karlsruhe Institute of Technology

The 2022 Nothern European Stata Conference
October 12, 2022



2/21

Unconditional quantile treatment effects

If we know the whole distribution of the potential outcomes, FY 1(Y ) and FY 0(Y )
under the treated (T = 1) and untreated condition (T = 0) respectively, we can
define quantile treatment effects (QTEs) for the quantile τ as:

QTEτ = Qτ
Y 1 −Qτ

Y 0 (1)

, where Qτ
Y 1 and Qτ

Y 0 are the value of quantile τ under the potential outcomes.

(Frölich and Melly 2010; Morgan and Winship 2015; Wenz 2018; Firpo 2007)
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Treatment effect heterogeneity: an example
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Figure: Unconditional quantile treatment effects of living in a poor neighborhood on
5th-grade test scores in Norway, estimated using the RQR model.
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Estimating QTEs in the presence of covariates: CQR

The traditional quantile regression (CQR) approach does not
identify (unconditional) QTEs

Estimated in Stata using the official qreg command and community-contributed
commands such as xtqreg (Machado and Silva 2005, 2018b), ivqreg2 (Machado and
Silva 2018a, 2019), sivqr (Kaplan 2020), and qmodel (Bottai and Orsini 2019a).
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Estimating QTEs in the presence of covariates: UQR

The popular ”new” unconditional quantile regression approach
does not identify (unconditional) QTEs.

Estimated in Stata using the community-contributed commands rifreg (Firpo et al.
2009), rifhdreg (Rios-Avila 2020), or xtrifreg (Borgen, 2016).

Borgen, NT, A Haupt, and ØN Wiborg. 2022. “Quantile Regression Estimands and
Models: Revisiting the Motherhood Wage Penalty Debate”. Forthcoming in
European Sociological Review .
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Current QTE models cannot include fixed effects

Propensity score approach Generalized quantile regressions

Estimated in Stata using the community-contributed commands ivqte (Frölich and
Melly 2010) and genqreg (Baker, Powell, and Smith 2016).
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The Residualized Quantile Regression (RQR) model

Two-step approach:
1 Treatment is purged of confounding in the first step
2 QTE estimated using a bivariate quantile regression model in the

second step

Two main building blocks:
1 Modeling treatment assignment separately from estimating QTE
2 Decomposition of the treatment variable into a piece explained by

the observed control variables and a piece orthogonal to the
controls.

(Frisch and Waugh 1933; Lovell 1963; Angrist and Pischke 2009; Goldberger 1991)
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Two-step QTE procedure

Step 1: Regress the treatment variable (Ti) on the control variables
(xi) using OLS and obtain the residuals (T̃i).

Ti = δ0 + δ1Xi + εi (2)

T̃i = Ti − T̂ (3)

Step 2: Regress the outcome variable (yi) on the residualized
treatment variable using the CQR algorithm:

N∑
i:yi≥β

(τ)
0 +β

(τ)
1 T̃i

τ |yi − β
(τ)
0 − β

(τ)
1 T̃i|+

N∑
i:yi<β

(τ)
0 +β

(τ)
1 T̃i

(1− τ)|yi − β
(τ)
0 − β

(τ)
1 T̃i| (4)

Borgen, NT, A Haupt, and ØN Wiborg. 2022. “A New Framework for Estimation
of Unconditional Quantile Treatment Effects: The Residualized Quantile
Regression (RQR) Model.” SocArXiv.
https://osf.io/preprints/socarxiv/42gcb/

https://osf.io/preprints/socarxiv/42gcb/


8/21

Two-step QTE procedure

Step 1: Regress the treatment variable (Ti) on the control variables
(xi) using OLS and obtain the residuals (T̃i).

Ti = δ0 + δ1Xi + εi (2)

T̃i = Ti − T̂ (3)

Step 2: Regress the outcome variable (yi) on the residualized
treatment variable using the CQR algorithm:

N∑
i:yi≥β

(τ)
0 +β

(τ)
1 T̃i

τ |yi − β
(τ)
0 − β

(τ)
1 T̃i|+

N∑
i:yi<β

(τ)
0 +β

(τ)
1 T̃i

(1− τ)|yi − β
(τ)
0 − β

(τ)
1 T̃i| (4)

Borgen, NT, A Haupt, and ØN Wiborg. 2022. “A New Framework for Estimation
of Unconditional Quantile Treatment Effects: The Residualized Quantile
Regression (RQR) Model.” SocArXiv.
https://osf.io/preprints/socarxiv/42gcb/

https://osf.io/preprints/socarxiv/42gcb/


9/21

,

Flexible and fast estimation of quantile
treatment effects: The rqr and rqrplot

commands

Nicolai T. Borgen
University of Oslo

Oslo, Norway
n.t.borgen@isp.uio.no

Andreas Haupt
Karlsruhe Institute of Technology

Karlsruhe, Germany
andreas.haupt@kit.edu

Øyvind Wiborg
University of Oslo

Oslo, Norway
o.n.wiborg@sosge.uio.no

Abstract. Using quantile regression models to estimate quantile treatment ef-
fects is becoming increasingly popular. This paper introduces the rqr command
that can be used to estimate residualized quantile regression (RQR) coefficients
and the rqrplot postestimation command that can be used to effortless plot the
coefficients. The main advantages of the rqr command compared to other Stata
commands that estimate (unconditional) quantile treatment effects are that it can
include high-dimensional fixed effects and that it is considerably faster than the
other commands.
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1 Introduction

Quantile regression models have become increasingly popular in the last couple of
decades and considerable methodological developments have occurred within the same
time frame. One such development is the residualized quantile regression (RQR) model,
which can be used to identify unconditional quantile treatment effects (QTEs) (Borgen
et al. 2021). This paper introduces the rqr command that estimate RQR coefficients
and the rqrplot postestimation command that effortless plots RQR coefficients.

Quantile regression models share the fact that they are interested in quantiles of the
outcome variable rather than simply the mean. However, various quantile regression
models have different aims and interpretations. Therefore, let us begin by clarifying
how the RQR model, and the corresponding rqr command, relate to other quantile
regression approaches and Stata commands.

There are three overall classes of quantile regression models. First, we have the condi-
tional quantile regression (CQR) model (Koenker 2005), which estimates group-specific
quantile differences. The CQR model can be estimated in Stata using the official qreg
command, and variants of the model can be estimated using user-written commands
such as xtqreg (Machado and Silva 2018b, 2019), ivqreg2 (Machado and Silva 2019,
2018a), sivqr (Kaplan 2020), and qmodel (Bottai and Orsini 2019a). The seminal work
of Koenker and colleagues in the 1970s marked the beginning of quantile regressions,
and quantile regressions have historically been synonymous with CQR. However, since
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Getting started

To get started, download the rqr package from the SSC Archive:

ssc install rqr

Our package builds upon the great work by others.

To use all the functionalities of the rqr command, download the
qrprocess (Chernozhukov et al. 2020) and reghdfe (Correia 2016)
commands.

ssc install qrprocess

ssc install reghdfe
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Estimating the RQR model in Stata
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Union wage example

. webuse nlswork, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. global x year c.grade##c.grade south i.ind_code

. rqr ln_wage union, quantile(.25 .50 .75) controls($x)

Residualized Quantile Regression Number of obs = 19147
Quantiles: .25 .50 .75

ln_wage Coefficient Std. err. t P>|t| [95% conf. interval]

Q.25
union .1470059 .0106528 13.80 0.000 .1261255 .1678862
_cons 1.435409 .0041004 350.07 0.000 1.427372 1.443446

Q.5
union .1355751 .0103985 13.04 0.000 .1151931 .1559571
_cons 1.731663 .0041672 415.55 0.000 1.723495 1.739831

Q.75
union .1196972 .0108932 10.99 0.000 .0983456 .1410488
_cons 2.050022 .0049404 414.95 0.000 2.040339 2.059706

Control variables: year grade c.grade#c.grade south i.ind_code
Algorithm: Frisch-Newton interior point with preprocessing (from qrprocess)
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Individual-level fixed effects

. rqr ln_wage union, quantile(.25 .50 .75) controls($x) absorb(idcode)

Residualized Quantile Regression Number of obs = 19147
Quantiles: .25 .50 .75

ln_wage Coefficient Std. err. t P>|t| [95% conf. interval]

Q.25
union .1112333 .0146136 7.61 0.000 .0825892 .1398773
_cons 1.434787 .0041642 344.55 0.000 1.426625 1.442949

Q.5
union .084385 .0147454 5.72 0.000 .0554827 .1132873
_cons 1.730358 .0041854 413.43 0.000 1.722154 1.738561

Q.75
union .068447 .0183668 3.73 0.000 .0324465 .1044475
_cons 2.052283 .0049522 414.42 0.000 2.042576 2.06199

Control variables: year grade c.grade#c.grade south i.ind_code
Fixed effects: idcode (absorbed in first step using areg)
Algorithm: Frisch-Newton interior point with preprocessing (from qrprocess)
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Bootstrapping

. bootstrap, reps(100): rqr ln_wage union, quantile(.25 .50 .75) controls($x) absorb(i
> dcode)
(running rqr on estimation sample)

Bootstrap replications (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

Quantile regression Number of obs = 19,147
Replications = 100
Wald chi2(1) = 80.13
Prob > chi2 = 0.0000

Observed Bootstrap Normal-based
ln_wage coefficient std. err. z P>|z| [95% conf. interval]

Q.25
union .1112335 .0124259 8.95 0.000 .0868792 .1355878
_cons 1.434787 .0034589 414.81 0.000 1.428008 1.441567

Q.5
union .084385 .0113865 7.41 0.000 .0620679 .1067021
_cons 1.730358 .0041315 418.82 0.000 1.72226 1.738455

Q.75
union .0684471 .0153809 4.45 0.000 .038301 .0985931
_cons 2.052283 .005669 362.02 0.000 2.041172 2.063394
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Table

. eststo clear

. quietly eststo: rqr ln_wage union, quantile(.25 .50 .75)

. quietly eststo: rqr ln_wage union, quantile(.25 .50 .75) controls($x)

. quietly eststo: rqr ln_wage union, quantile(.25 .50 .75) controls($x) absorb(idcode)

. esttab, b(4) se(4) keep(union) nomtitles

(1) (2) (3)

Q.25
union 0.2315*** 0.1470*** 0.1112***

(0.0094) (0.0107) (0.0146)

Q.5
union 0.2412*** 0.1358*** 0.0844***

(0.0097) (0.0104) (0.0147)

Q.75
union 0.2247*** 0.1197*** 0.0684***

(0.0100) (0.0109) (0.0184)

N 19238 19147 19147

Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001.
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Plot results in Stata
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Plot union wage effects

. quietly rqr ln_wage union, quantile(.05(.05).95) controls($x)

. rqrplot

Plot RQR coefficients
Outcome: ln_wage
Treatment: union
Confidence bands: 95%

b se ll ul
0.05 .15039413 .01388349 .12318127 .177607
0.10 .12282395 .01114355 .10098162 .14466628
0.15 .13365832 .01130318 .11150309 .15581353
0.20 .15887149 .01095585 .13739707 .18034591
0.25 .14700586 .01065276 .12612553 .1678862
0.30 .13912833 .01055274 .11844403 .15981261
0.35 .12807178 .01064612 .10720447 .14893912
0.40 .13878711 .01075029 .1177156 .15985861
0.45 .13642183 .01062404 .11559777 .15724589
0.50 .13556854 .0103985 .11518656 .15595052
0.55 .13408878 .01020248 .11409102 .15408656
0.60 .14041522 .01014132 .12053734 .16029312
0.65 .13982573 .01026378 .11970783 .15994364
0.70 .13264591 .01057539 .11191721 .1533746
0.75 .11961129 .01089341 .09825926 .14096332
0.80 .10654001 .01100655 .0849662 .12811382
0.85 .08280569 .01117593 .06089989 .10471149
0.90 .044574 .01181828 .02140915 .06773886
0.95 .04169115 .01573986 .01083965 .07254265
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Plot union wage effects
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Customize graph
quietly rqr ln_wage union, quantile(.03(.01).97) controls($x)
rqrplot, twopts(title(Panel a) name(m1, replace) ylab(,nogrid) xlab(, nogrid)) ///

ciopts(color(sea%30))
rqrplot, ciopts(recast(rcap)) twopts(name(m2, replace) title(Panel b) ///

ylab(,nogrid) xlab(, nogrid))
rqrplot, ciopts(recast(rline)) twopts(name(m3, replace) title(Panel c) ///

ylab(,nogrid) xlab(, nogrid))
rqrplot, noci twopts(name(m4, replace) title(Panel d) ///

ylab(,nogrid) xlab(, nogrid)) bopts(recast(connected))
graph combine m1 m2 m3 m4, title(Union wage effects)
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Comparisons to other QTE commands

PS-QTE (ivqte)
(Firpo 2007)

GQR (genqreg)
(Powell 2020)

RQR (rqr)
(Borgen et al.
2022)

Non-binary treat-
ment variables

No Yes Yes

High-dimensional
fixed effects

No No Yes

Computational
speed

Medium Slow Fast

Ease of implemen-
tation

Medium Hard Easy

Instrumental vari-
ables

Binary IVs Yes Yes
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Thank you!

The importance of matching quantile regression model to research question

Borgen, NT., A Haupt, and ØN Wiborg. 2022. “Quantile Regression Estimands and Models: Revisiting
the Motherhood Wage Penalty Debate”. Forthcoming in European Sociological Review. (Also available
on SocArXiv. https://osf.io/preprints/socarxiv/9avrp/)

Introducing the Residualized Quantile Regression (RQR) Model

Borgen, NT, A Haupt, and ØN Wiborg. 2022. “A New Framework for Estimation of Unconditional
Quantile Treatment Effects: The Residualized Quantile Regression (RQR) Model.” SocArXiv.
https://osf.io/preprints/socarxiv/42gcb/

Developing Stata commands to estimate and plot the RQR coefficients

Borgen, NT, A Haupt, and ØN Wiborg. 2021. ”Flexible and fast estimation of quantile treatment effects.
The rqr and rqrplot commands”. SocArXiv. https://osf.io/preprints/socarxiv/4vquh/

https://osf.io/preprints/socarxiv/9avrp/
https://osf.io/preprints/socarxiv/42gcb/
https://osf.io/preprints/socarxiv/4vquh/
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Supplementary slides

Theoretical argument: E[T̃i|xi] = 0

As an example, consider the ”tuning” of the median regression
coefficients:

∑
|yi − β

(.50)
0 − β

(.50)
1 T̃i| (5)

CEF Decomposition property

Decomposition of Ti into a piece explained by xi (T̂i) and a
residual piece (T̃i = T̂i − Ti)

Treatment residuals T̃i are (by construction) mean independent of
observed control variables xi.

E[T̃i|xi] = E[Ti − E[Ti|xi]|xi = E[Ti|xi]− E[Ti|xi] = 0 (6)

Takeaway: When T̃i increases by one unit, this tells us nothing about
the average value of the confounder xi.
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Supplementary slides

Monte Carlo simulations

Data simulations consists of 10,000 draws of N=2,000.

We estimate the β’s using five different quantile regression:
▶ The residualized quantile regression (RQR) model
▶ The propensity score matching (PS-QTE) method of Firpo (2007)
▶ The generalized quantile regression (GQR) method of Powell (2020)
▶ The conditional quantile regression model (Koenker 2005)
▶ The unconditional quantile regression model of Firpo et al. (2009)

We report the average difference between the estimated regression

coefficient (β̂
(τ)
j ) and the true QTE (β(τ)) at the quantile τ across

the 10,000 independent draws j:

φ(τ) = E[β̂
(τ)
j − β(τ)]
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Supplementary slides

Simulation setup

We begin by defining a random pre-treatment outcome variable y0
i as:

y0
i = x ∗ 1 + εi, where εi ∼ N(0, 1) (7)

We then allow the strength of the treatment variable (ti) to depend on the individual
i’s percentile rank (r ∼ U [0, 1]) in the pre-treatment outcome distribution (y0

i ).

yi = β ∗ ti + y0
i , where β = (ri − 0.50) (8)

Setups 1 and 2 are similar, except the conditional probability of being treated
depends on xi in scenario 2: P (ti = 1|xi = 0) = 0.067 and P (ti = 1|xi = 1) = 0.20.



4/18

Supplementary slides

What to expect?

QTE models produce similar estimates
▶ RQR = GQR = PS-QTE

CQR and UQR may or may not provide different estimates.
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Supplementary slides

Simulation results I
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Figure: Average differences between estimated regression coefficients and the true
QTE (φ(τ)) from simulation scenarios 1 and 2.
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Simulation results II
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Figure: Average differences between estimated regression coefficients and the true
QTE (φ(τ)) from simulation scenarios 1 and 2.
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Supplementary slides

Simulation result II



8/18

Supplementary slides

Simulation results III
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Figure: Quantile treatment effects of a binary treatment variable in data
simulations with different treatment effect structures and outcome variables (1,000
draws of N=2,000) .
Note: QTEs are constant in panels A and D, quadratic in panels B and E, and cubic in panels C and F.
The outcome has a normally distributed error term in panels A-C and a right-skewed error term in panels
D-F. The reported coefficients are the regression coefficients at each quantile divided by the outcome
variable’s standard deviation.
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Data simulations: Monte Carlo error
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Data simulations: Estimated β’s
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Revisiting Firpo et al. (2009)’s union wage example
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Figure: Effects of union status on log wages for full-time working males in the 1983-1986
Outgoing Rotation group supplement of the Current Population Survey (N=251,153).

Note: The sample includes male household heads aged 16-64. The included control variables are the
respondents’ age, five dummies for educational level, a dummy variable for completed education, a
dummy variable for married, and a dummy variable for non-white.
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Register data example

-.06

-.05

-.04

-.03

-.2

-.15

-.1

-.05

-.05

0

.05

.1

-.05

0

.05

.1

.15

.006

.008

.01

.012

.04

.06

.08

.1

.12

0 .5 1 0 .5 1 0 .5 1

Birth order Born Sept.-Dec. Children of immigrant

Girl Parental earnings School SES

RQR GQR PS-QTE

C
oe

ffi
ci

en
t

Quantile

Figure: Comparing RQR, GQR, and PS-QTE coefficients on 8th-grade standardized test
scores in Norwegian register data (N=480,264).



13/18

Supplementary slides

NLSY example
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Figure: Comparing RQR, GQR, and PS-QTE coefficients on log wages in a subsample of
the National Longitudinal Survey (N=3,956).
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What about statistical hypothesis testing?

Standard errors are typically bootstrapped in various quantile
regression models

▶ The conditional quantile regression model
▶ The propensity score approach of Firpo (2007)
▶ The unconditional quantile regression model of Firpo et al. (2009)

Bootstrap the entire two-step approach to get standard errors and
confidence intervals.

(Hao and Naiman 2007; Koenker and Hallock 2001; Firpo 2007; Firpo et al. 2009)
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Confidence intervals’ coverage rates

10th quantile

25th quantile
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Normal-Approximation
Bootstrap CIs
Percentile
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Figure: Coverage rate of 95% confidence intervals based on asymptotic standard errors and
various bootstrapped confidence intervals (2000 repetitions) in simulation scenario 2 (1000
draws of N=2000).

Note: In each simulation draw, we record whether the 95% confidence intervals include the true value
(C95j). The coverage rate calculates the proportion of the confidence intervals that include the true
value: 1/n

∑n
j=1(C95), where j index simulated dataset and n is the total number of simulated datasets

(Heisig, Schaeffer, & Giesecke, 2017).
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Union wage example: RIF-OLS and CQR
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UQR vs. QTE: Motherhood wage penalty
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Supplementary slides

UQR vs. QTE: SES effects
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