# SSIVQREG: QUANTILE SELECTION MODELS WITH ENDOGENOUS REGRESSORS IN STATA

Paul Bingley, Christophe Kolodziejczyk, Nicolai Kristensen

VIVE, The Danish Center for Social Science Research

August 29, 2025

Contact: ckol@vive.dk



#### **OUTLINE**

Introduction

Model

ESTIMATION

SSIVQREG

APPLICATIONS

CONCLUSION





#### **MOTIVATION**

- Old question in economics: estimate the returns to education
- Several issues
  - Sample selection: decision to work is a choice; earnings/wages are only observed for participants.
  - Endogeneity: education is a choice correlated with unobserved factors driving the individual wages
  - ► Analysis of the wage distribution



#### BACKGROUND

- Conditional mean: Heckman model and its variations
- ▶ Distribution: Arellano and Bonhomme (2017) (AB) propose estimation methods for quantile selection models.
- ► AB consider the case where covariates are exogenous and suggest one method for the endogenous case.
- ► AB's estimator for the case with **exogenous** covariates has been implemented in Stata with two commands
  - ▶ arhomme (Biewen and Erhardt, 2021)
  - qregsel (Muñoz and Siravegna, 2021)
- ▶ No commands for the endogeneity case





## SSIVQREG

We introduce a new Stata command: **SSIVQREG**.

- ▶ Implement estimators for the case of endogenous covariates.
- New estimator based on the smoothing of the estimating equations of the model. Reduce computation time
- ► This estimator can be applied to the case with exogenous covariates.
- ► Computes analytical standard errors derived in AB's article.
- and more



#### ROADMAP

- Explain the quantile selection model
- Present SSIVQREG
- Show a Monte Carlo simulation exercise
- ▶ Show an application with real data.



# QUANTILE SELECTION MODEL WITH ENDOGENOUS REGRESSORS

Consider the following model.

$$Y^* = q(U, E, X), \tag{1}$$

$$D = \mathbf{1} \{ V \leqslant p(Z) \}, \qquad (2)$$

$$Y = Y^* \text{ if } D = 1, \tag{3}$$

 $Y^*$  has a linear quantile form for a given rank  $\tau$ :

$$q(\tau, E, X) = E\alpha_{\tau} + X\beta_{\tau}$$



## QUANTILE SELECTION MODEL WITH ENDOGENOUS REGRESSORS\*

- Y is the outcome (wage)
- $ightharpoonup Y^*$  is the latent outcome and is only observed if D=1
- E (education) is a potentially endogenous variable
- X is a set of exogenous variables and U the unobserved ability.
- ▶ *V* is the unobserved resistance to participate
- $\triangleright$  p(Z) is the propensity to participate given observed Z



#### SELECTION

- ▶ Individuals participate if their propensity (given Z) exceeds V.
- U and V are potentially correlated. Those with a high ability are for example more likely to have a lower resistance to participate
- Modeled with a bivariate copula  $C(U, V; \rho)$ .  $\rho$  is the copula dependency parameter
- Parametric copula: Frank or Gaussian



#### Moment condition: Rotated quantile

AB (2017) have the following identification result

$$P[Y^* \leqslant q(\tau, E, X) | D = 1, Z] = \frac{C_x(\tau, p(z))}{p(z)}$$
$$= G_x(\tau, p(z))$$

Note: if U and V are independent, then  $G_X(\tau, p(z)) = \tau$  and we have the conditional moment for quantile regression. Appendix



#### **IDENTIFICATION**

In order to identify the model we need exclusion restrictions.

- ► (At least) one instrument for E
- One instrument for the participation decision D



## ESTIMATION I: AB'S ESTIMATOR/PROFILED GMM

#### AB's estimator consists of three steps

- 1. Estimate the propensity score
- 2. Choose the value of  $\rho$  which minimizes the objective function.
  - 2.1 For a fixed value of the dependency parameter estimate IV quantile regressions for a predefined grid of probabilities (e.g. 0.1, 0.2, ..., 0.9).
  - 2.2 and compute the moment condition for the dependency parameter.
  - 2.3 Probabilities are corrected for sample selection.
  - 2.4 The IVQR (Chernozhukov and Hansen, 2008) involves a grid search for the parameter of the endogenous variable.
- 3. (Optional) Estimate more quantiles with the estimated value of the dependency parameter.

#### ESTIMATION II: SMOOTHING

- Applied by Kaplan and Sun (2017) as an alternative to the IVQR.
- Original problem is nonconvex
  - Use a smoothed version of the moment conditions instead of the original moments.
  - Use the GMM to estimate the parameters of this model
- Requires specifying the smoothing parameter or bandwidth.
- Optimize the objective function with the Gauss-Newton algorithm (with optimize or moptimize)



### SSIVQREG'S FEATURES

- Estimates quantile models with or without endogenous regressors.
- Two main estimators: profiled or smoothed GMM
- Computes analytical asymptotic standard errors and allows bootstrapping.
- Additional features: preprocessing (Pereda-Fernández, 2025), one-step estimator, simulated annealing, AMCMC (Baker, 2014).



#### SYNTAX

#### **Exogenous case:**

```
ssivqreg depvar [indepvars] [if] [in] [weight], select( depvar
[=] [indepvars]) [ quantile(#) nrho(#) copula(string) gmm
rescale ]
```

#### Endogenous case:

```
ssivqreg depvar (varname= varlist) [indepvars] [if] [in] [weight],
select( depvar [=] [indepvars] ) [ quantile(#) nrho(#)
nalpha(#) copula(string) gmm rescale amcmc ]
```



#### MONTE CARLO SIMULATION EXERCISE

- We investigate the bias and the computation time of our estimators
- focus on the dependency parameter and a heterogeneous treatment effect.
- We run simulations for different values of the dependency parameter.
- ightharpoonup 10,000 observations.  $\sim$  50 % of selected observations
- ➤ 500 replications (100 for the profiled GMM in the endogenous case)



#### DATA GENERATION

- Two Data generating processes (DGP): Exogenous/endogenous treatment.
- ► Heterogenous treatment effect E: Uniformly distributed between 0 and 1, Median effect is 0.5.
- Just-identified case: one instrument for the participation equation and one for the treatment effect.
- ► Sample selection: Frank and Gaussian copulas.



#### RESULTS

- Estimators consistent for the dependency parameter Dependency
- Treatment effect:
  - exogenous cases: consistent TE exogenous
  - endogenous case: higher bias for high dependency and low/higher quantiles TE endogenous
- ► Computation time is considerably reduced when smoothing CPU time



## Married women labor supply (Mroz, 1987)

- ▶ Data on married women labor supply in the US (Mroz, 1987)
- ➤ Small dataset used in Wooldrige's textbook (2010) to illustrate Heckman's model (753 obs.)
- Data on wage, education, husband's income, non-labor income and number of children
- Instruments:
  - Wage equation: Use parental education and the husband's education to instrument education
  - Participation equation: Non-labor income, parental education and the husband's education



#### MROZ DATA - ESTIMATES RETURNS TO EDUCATION

- Estimates returns to education from these data.
- Compare the different models available (QR, IVQR, SSQR, SSIVQR)
- Although the point-estimates of the sample selection models tend to be lower, we cannot reject the absence of sample selection.
- ► Point-estimates to returns to education tend to be lower when instrumenting education, but confidence intervals are larger
- Bear in mind that the sample is quite small.





#### SUMMARY

- 1. Stata command SSIVQREG
  - Allows to estimate quantile selection models with or without endogenous covariates.
  - Three estimation methods
  - Analytical standard-errors and bootstrap
- 2. Monte Carlo study
  - Estimators seem to perform well except in the endogenous case when the correlation between unobserved variables is high, the bias for the treatment effect is rather high.
  - Smoothing is much faster.
- 3. I have illustrated the use of SSIVQREG with an application with real data.

## Thank you!



#### References I

- ARELLANO, M., AND S. BONHOMME (2017): "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," *Econometrica*, 85(1), 1–28.
- Baker, M. J. (2014): "Adaptive Markov Chain Monte Carlo Sampling and Estimation in Mata," *The Stata Journal*, 14(3), 623–661.
- BIEWEN, M., AND P. ERHARDT (2021): "arhomme: An implementation of the Arellano and Bonhomme (2017) estimator for quantile regression with selection correction," *The Stata Journal*, 21(3), 602–625.
- CHERNOZHUKOV, V., AND C. HANSEN (2008): "Instrumental variable quantile regression: A robust inference approach," *Journal of Econometrics*, 142(1), 379–398.
- Kaplan, D. M., and Y. Sun (2017): "SMOOTHED ESTIMATING EQUATIONS FOR INSTRUMENTAL VARIABLES QUANTILE REGRESSION," *Econometric Theory*, 33(1), 105–157.





#### References II

- MROZ, T. A. (1987): "The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions," *Econometrica*, 55(4), 765–799.
- Muñoz, E., AND M. SIRAVEGNA (2021): "Implementing quantile selection models in Stata," *The Stata Journal*, 21(4), 952–971.
- Pereda-Fernández, S. (2025): "Fast Algorithms for Quantile Regression with Selection," *Journal of Econometric Methods*, 14(1), 35–47.
- WOOLDRIDGE, J. M. (2010): Econometric Analysis of Cross Section and Panel Data, vol. 1 of MIT Press Books. The MIT Press.



#### APPENDIX: MOMENT CONDITIONS

IV quantile regression and sample selection (*L* quantiles):

$$E\left[DZ'\left(1\{y \leq X\beta_{\tau_{I}}\} - G\left(\tau_{I}, ps; \rho\right)\right)\right] = 0$$

$$\sum_{I=1}^{L} E\left[D\varphi\left(\tau_{I}, Z\right)\left(1\{y \leq X\beta_{\tau_{I}}\} - G\left(\tau_{I}, ps; \rho\right)\right)\right] = 0$$





#### APPENDIX: SMOOTHED MOMENTS

$$E\left[DZ'\left(I\left(-\frac{y-\beta_{\tau_{l}}}{h_{\tau_{l}}}\right)-G\left(\tau_{l},ps;\rho\right)\right)\right]=0$$

$$\sum_{l=1}^{L}E\left[D\varphi\left(\tau_{l},Z\right)\left(I\left(-\frac{y-\beta_{\tau_{l}}}{h_{\tau_{l}}}\right)-G\left(\tau_{l},ps;\rho\right)\right)\right]=0$$

 $I(\cdot)$  is a smoothing function and  $h_{\tau_l}$  is a bandwidth.



#### DGP I: No endogenous covariates

- d is a binary exogenous treatment
- $\triangleright$  u and v are correlated. Gaussian or Frank copula
- $\triangleright$   $z_p$  is the instrument for the participation decision

$$y = \alpha d + x_1 + x_2 + u$$
  
 $p = 1 (0.5x_1 + 0.5x_2 - 0.5z + 0.5z_p + v > 0)$ 



#### DGP II: 1 ENDOGENOUS COVARIATES

- d is endogenous since it is correlated with u
- z is the instrument for d

$$y = \alpha d + x_1 + x_2 + u$$

$$p = 1 (0.5x_1 + 0.5x_2 - 0.5z + 0.5z_p + v > 0)$$

$$d = 1(0.5x_2 + 0.5z + \epsilon > 0)$$

$$\epsilon = 0.5u + 0.25w$$



#### BIAS DEPENDENCY PARAMETER

|              | Exogenous        |          | Endogenous       |          |  |
|--------------|------------------|----------|------------------|----------|--|
| ho           | ${\sf Smoothed}$ | Profiled | ${\sf Smoothed}$ | Profiled |  |
| Gaussian     |                  |          |                  |          |  |
| -0.8         | 0.004            | 0.000    | 0.007            | 0.002    |  |
| -0.5         | 0.001            | -0.001   | 0.007            | 0.004    |  |
| 0.0          | 0.001            | -0.001   | 0.005            | -0.001   |  |
| 0.5          | -0.004           | -0.001   | -0.005           | -0.008   |  |
| 0.8          | -0.005           | -0.003   | -0.007           | -0.002   |  |
| Replications | 500              | 500      | 500              | 100      |  |

Back to results



#### BIAS TREATMENT EFFECT - EXOGENOUS

|          | Smoothed |        |        | Profiled |        |        |
|----------|----------|--------|--------|----------|--------|--------|
| ho       | 0.1      | .5     | 0.9    | 0.1      | .5     | 0.9    |
| Gaussian |          |        |        |          |        |        |
| -0.8     | 0.003    | -0.002 | -0.010 | 0.000    | -0.001 | -0.005 |
| -0.5     | 0.002    | -0.002 | -0.007 | -0.001   | -0.002 | -0.003 |
| 0.0      | 0.003    | -0.001 | -0.002 | 0.002    | -0.000 | -0.002 |
| 0.5      | 0.004    | 0.001  | -0.002 | 0.001    | 0.000  | 0.001  |
| 0.8      | 0.003    | 0.002  | -0.001 | -0.001   | 0.001  | -0.001 |
| R        | 500      | 500    | 500    | 500      | 500    | 500    |





#### BIAS TREATMENT EFFECT - ENDOGENOUS

|          | Smoothed | Profiled |        |       |       |        |
|----------|----------|----------|--------|-------|-------|--------|
| ho       | 0.1      | .5       | 0.9    | 0.1   | .5    | 0.9    |
| Gaussian |          |          |        |       |       |        |
| -0.8     | 0.004    | 0.002    | -0.153 | 0.008 | 0.004 | -0.173 |
| -0.5     | 0.002    | 0.001    | -0.009 | 0.002 | 0.002 | -0.004 |
| 0.0      | 0.006    | 0.002    | -0.002 | 0.003 | 0.000 | 0.011  |
| 0.5      | 0.014    | 0.000    | -0.006 | 0.027 | 0.005 | -0.001 |
| 8.0      | 0.081    | -0.001   | 0.001  | 0.054 | 0.011 | 0.005  |
| R        | 500      | 500      | 500    | 100   | 100   | 100    |





## COMPUTATION TIME (IN SECONDS)

|              | Exogenous        |          |       | Endogenous |          |       |
|--------------|------------------|----------|-------|------------|----------|-------|
|              | ${\sf Smoothed}$ | Profiled |       | Smoothed   | Profiled |       |
| ho           | mean             | mean     | ratio | mean       | mean     | ratio |
| -0.8         | 2                | 93       | 44    | 5          | 5592     | 1040  |
| -0.5         | 2                | 66       | 36    | 2          | 3521     | 2058  |
| 0.0          | 2                | 98       | 59    | 2          | 5027     | 3284  |
| 0.5          | 2                | 65       | 35    | 2          | 3408     | 2099  |
| 0.8          | 2                | 95       | 45    | 3          | 3497     | 1398  |
| Replications | 500              | 500      |       | 500        | 100      |       |

Back to results



#### MROZ DATA - RESULTS

|            | QR       | SSIVQREG  | GMM       | IVQR     | SSIVQREG   | GMM      |
|------------|----------|-----------|-----------|----------|------------|----------|
|            |          | exogenous |           |          | endogenous |          |
| $	au_{20}$ | 0.103*** | 0.0996*** | 0.0997*** | 0.0856*  | 0.0914*    | 0.0783*  |
|            | (4.32)   | (3.69)    | (3.62)    | (2.47)   | (2.01)     | (2.33)   |
| $	au_{50}$ | 0.116*** | 0.114***  | 0.109***  | 0.115*** | 0.111***   | 0.104*** |
|            | (6.78)   | (7.28)    | (7.01)    | (4.75)   | (4.74)     | (4.91)   |
| $	au_{80}$ | 0.118*** | 0.115***  | 0.116***  | 0.120*** | 0.127***   | 0.112*** |
|            | (8.83)   | (7.90)    | (8.63)    | (5.64)   | (6.60)     | (5.27)   |
| $\rho$     |          | 0.0695    | 0.118     |          | -0.0695    | 0.148    |
|            |          | (0.34)    | (0.63)    |          | (-0.33)    | (0.76)   |
| N          | 428      | 753       | 753       | 428      | 753        | 753      |

t statistics in parentheses, # points lpha= 200 , # points ho= 100

<sup>\*</sup> p < 0.05, \*\* p < 0.01, \*\*\* p < 0.001





