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Motivation

Survey data analysis
We collect data from a population of interest so that we can
describe the population and make inferences about the
population.

Sampling
The goal of sampling is to collect data that represents the
population of interest.

I If the sample does not reasonably represent the population
of interest, then we cannot accurately describe the
population or make inferences.



Motivation

Weighting
Sampling weights provide a measure of how many individuals a
given sampled observation represents in the population.

I In simple random sampling (SRS), the sampling weight is
constant

wi = N/n

I N is the population size
I n is the sample size

I Other, more complicated, sampling designs can also be
self weighting, but most are not.



Motivation

Weighting
Survey methods employ sampling weights in order to describe
the population and make inferences about the population.

Sampling weights

I Correctly scaled sampling weights are necessary for
estimating population totals.

I Typically provide for consistent and approximately
unbiased estimates.

I Typically provide for more accurate variance estimation
when used with the other survey design characteristics.



Motivation

Non-response
Failure to observe all the individuals that were selected for the
sample.

I A common cause for some groups to be under-represented
and other groups to be over-represented.

Not all samples are representative
Even complete samples taken from a given sampling design
can yield a sample that is not representative of the population.



Motivation

Example
Consider a survey design that intends for individuals sampled
from group g to have weight

wgi =
Ng

ng

I Ng is the population size for group g
I ng is the group’s sample size

If we observe mg < ng individuals, then wgi is smaller than it
should be. Group g is under-represented in the sample.

I Seems reasonable to adjust wgi by something that will
make them sum to Ng in the sample.

w̃gi = wgi
ng

mg
=

Ng

mg



Motivation

Weight adjustment
Weight adjustment tries to give more weight to
under-represented groups and less weight to over-represented
groups.

I The idea is to cut down on bias, thus make point estimates
more consistent for the things they are estimating.

I Has been used to force estimation results to be numerically
consistent with externally sourced measurements.

I Tends to result in more efficient point estimates, depending
upon the correlation between the analysis variable and the
auxiliary information.



Methods

Poststratification
Adjust weights so that the poststratum totals agree with
“known” values.

I simple method for weight adjustment
I requires poststratum identifiers are present in the sample

information
I single categorical auxiliary variable

I requires population poststratum totals
I adjustment is a function of the sampling weights and

poststratum totals
I new feature in Stata 9



Methods

Calibration
Adjust the sampling weights to minimize the difference between
“known” population totals and their weighted estimates.

I postratification is a special case
I supports multiple categorical auxiliary variables
I supports count and continuous auxiliary variables
I adjustment is a function of the sampling weights and

auxiliary information
I new feature in Stata 15

I raking-ratio method
I general regression method (GREG)



Syntax

Familiar work flow

1. Use svyset to specify the survey design characteristics.
I Sampling units
I Sampling and replication weights
I Strata
I Finite population correction (FPC)
I Poststratification, raking-ratio, or GREG

2. Use the svy: prefix for estimation.
I Calibration is supported by the following variance

estimation methods:
I Linearization
I Balanced repeated replication (BRR)
I Bootstrap
I Jackknife
I Successive difference replication (SDR)



Syntax

svyset psu
[
weight

]
, options || ...

Poststratification options

I poststrata(varname) specifies variable containing the
poststratum identifiers

I postweight(varname) specifies variable containing the
poststratum totals



Syntax

svyset psu
[
weight

]
, options || ...

Calibration options

I rake(calspec) specifies the raking-ratio method
I regress(calspec) specifies the GREG method
I calspec has syntax

varlist, totals(totals)

I varlist contains the list of auxiliary variables and allows
factor variables notation

I totals specifies the population totals for each auxiliary
variable

I var=# specify each population total separately
I matname specify the population totals using a matrix



Stata Example

Simulated population

frame count index variable
strata 2 h st1
PSU 1,000 i su1
SSU 100 j
total 200,000

I y is the measurement of interest
I µy , the mean of y, is the parameter of interest
I a and b are continuous auxiliary variables
I f and g are categorical auxiliary variables



Stata Example

Simulated population

ahij = µa + νahi + εahij

I νahi i.i.d. N(0, 100)
I εahij i.i.d. N(0, 100)
I ν and ε are independent
I a has intraclass correlation ρ2

a = .5
I µa = 10
I total for a is 2,000,000
I f categorizes a into 4 roughly-equal groups



Stata Example

Simulated population

bhij = µb + νbhi + εbhij

I νbhi i.i.d. N(0, 100)
I εbhij i.i.d. N(0, 300)
I ν and ε are independent
I b has intraclass correlation ρ2

b = .25
I µb = 5
I total for b is 1,000,000
I g categorizes b into 2 roughly-equal groups



Stata Example

Simulated population
Cell and margin sizes of f and g:

. table f g, row col

g
f 1 2 Total

1 23,238 22,693 45,931
2 25,286 29,486 54,772
3 27,618 25,059 52,677
4 22,615 24,005 46,620

Total 98,757 101,243 200,000



Stata Example

Simulated population

yhij = β0 + β1ahij + β2bhij + νyhi + εyhij

I νyhi i.i.d. N(0, 100)
I εyhij i.i.d. N(0, 100)
I ν and ε are independent
I y has intraclass correlation ρ2

b = .5
I β0 = 10, β1 = 4, β2 = 2
I y has overall mean

µy = β0 + β1µa + β2µb

= 10 + 4 × 10 + 2 × 5 = 60



Stata Example

Simulated population
Strength of association between y, a, and b:

. correlate y a b
(obs=200,000)

y a b

y 1.0000
a 0.8012 1.0000
b 0.5655 0.0017 1.0000



Stata Example

Simulated population
Strength of association between y, f, and g:

. correlate y f g
(obs=200,000)

y f g

y 1.0000
f 0.5774 1.0000
g 0.2560 -0.0022 1.0000



Stata Example

Sample from the population
Stratified two-stage design:

1. select 20 PSUs within each stratum
2. select 10 individuals within each sampled PSU

With zero non-response, this sampling scheme yielded:
I 400 sampled individuals
I constant sampling weights

pw = 500

Other variables:
I w4f – poststratum weights for f
I w4g – poststratum weights for g



Stata Example

Sample weighted cell totals for f
. table f [pw=pw], c(freq min w4f) format(%9.0gc)

f Freq. min(w4f)

1 50,000 45,931
2 75,000 54,772
3 59,000 52,677
4 16,000 46,620

I Over-represented: 2
I Under-represented: 4



Stata Example

Work flow

1. Specify the survey design characteristics:

svyset su1 [pw=pw], strata(st1) ...

2. Estimate the population parameter of interest:

svy: mean y



Stata Example

Postratification
I Using f
svyset su1 [pw=pw], strata(st1) ///

poststrata(f) postweight(w4f)



Stata Example

Raking-ratio using factor variable f

I Without population size, need bn.
svyset su1 [pw=pw], strata(st1) ///

rake(bn.f, totals(1.f=45931 ///
2.f=54772 ///
3.f=52677 ///
4.f=46620))

I With population size, i. is sufficient
svyset su1 [pw=pw], strata(st1) ///

rake(i.f, totals(1.f=45931 ///
2.f=54772 ///
3.f=52677 ///
4.f=46620 ///

_cons=200000))



Stata Example

zero non-response sample, using f

Variable orig post rake regress

y 53.005247 62.788326 62.788326 62.788326
7.4721232 5.3039955 5.3039955 5.3039955

N_pop 200,000 200,000 200,000 200,000

legend: b/se

I Reminder: µy is 60
I Weight adjustment changed the point estimate.
I Smaller variance estimates indicate a more efficient mean

estimate.



Stata Example

Raking-ratio using factor variables f and g
svyset su1 [pw=pw], strata(st1) ///

rake(bn.f bn.g, ///
totals(1.f=45931 ///

2.f=54772 ///
3.f=52677 ///
4.f=46620 ///
1.g=98757 ///
2.g=101243))



Stata Example

zero non-response sample, using f and g

Variable original rake regress

y 53.005247 64.435965 64.079348
7.4721232 4.2315801 4.2355881

N_pop 200,000 200,000 200,000

legend: b/se

I Reminder: µy is 60
I Distinct mean estimates.
I Bigger reduction in the variance estimates.



Stata Example

Raking-ratio using continuous variable a

I Using a without population total
svyset su1 [pw=pw], strata(st1) ///

rake(a, totals(a=2000000))

I Using a with population total
svyset su1 [pw=pw], strata(st1) ///

rake(a, totals(a=2000000 ///
_cons=200000))



Stata Example

zero non-response sample, using a

Variable orig rake_noc rake

y 53.005247 60.855469 64.083179
7.4721232 3.6519173 3.6369672

N_pop 200,000 218,098 200,000

legend: b/se

I Reminder: µy is 60
I Distinct mean estimates.
I Big reduction in the variance estimates.

I Recall the strong association between y and a.



Stata Example

Calibration
I Using a and b
svyset su1 [pw=pw], strata(st1) ///

rake(a b, totals(a=2000000 ///
b=1000000 ///

_cons=200000))



Stata Example

zero non-response sample, using a and b

Variable orig rake regress

y 53.005247 63.553724 63.613031
7.4721232 1.5635263 1.5635551

N_pop 200,000 200,000 200,000

legend: b/se

I Reminder: µy is 60
I Distinct mean estimates.
I Biggest reduction in the variance estimates.



Summary

I Calibration weight adjustments are determined by the
original sampling weights and auxiliary variables.

I Expect more efficient estimates for outcomes that have a
strong association with the auxiliary variables.

I Use svyset option rake() or regress().
I Use bn. operator for factor variables in varlist.
I Use _cons to specify the population size in totals().

I Use svy: prefix.
I All variance estimation methods support calibration.
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