Analysing competing risks data using flexible parametric survival models: what tools are available in Stata, which ones to use and when?

Sarwar Islam Mozumder (sarwar.islam@le.ac.uk)
Biostatistics Research Group, Dept. of Health Sciences, University of Leicester

2018 Nordic and Baltic SUGM | Oslo | 12 September 2018

Competing risks

Cause-specific hazard (CSH) rate, $h_k^{cs}(t)$

Instantaneous mortality (failure) rate from cause k, given that the individual is still alive up to time t

CSH relationship with cause-specific CIF

Cause-specific CIF, $F_k(t)$

Probability a patient will die from cause D = k by time t whilst also being at risk of dying from other competing causes of death

CSH relationship with cause-specific CIF

Cause-specific CIF, $F_k(t)$

$$F_k(t) = \int_0^t S(u) h_k^{cs}(u) du$$

$$S(t) = \prod_{k=1}^{K} S_k^{cs}(t) = \exp\left(-\sum_{k=1}^{K} \int_0^t h_k^{cs}(u) du\right)$$

Approaches for modelling (all) CSHs in Stata

Flexible parametric survival models (FPMs) [Royston and Parmar, 2002]

- Models and more accurately captures complex shapes of the (log-cumulative)
 baseline hazard function
- A generalisation of the Weibull distribution is used with restricted cubic splines (RCS) that allows for more flexibility

Cause-specific log-cumulative PH FPM

$$\ln\left(H_k^{cs}(t\mid \mathbf{x}_k)\right) = s_k(\ln t; \boldsymbol{\gamma}_k, \mathbf{m}_{0k}) + \boldsymbol{\beta}_k^{cs}\mathbf{x}_k$$

 $s_k(\ln t; \gamma_k, \mathbf{m}_{0k})$: baseline restricted cubic spline function on log-time

Flexible parametric survival models (FPMs) [Royston and Parmar, 2002]

- Models and more accurately captures complex shapes of the (log-cumulative) baseline hazard function
- A generalisation of the Weibull distribution is used with restricted cubic splines (RCS) that allows for more flexibility
- Can also easily include time-dependent effects (TDE)

Cause-specific log-cumulative non-PH FPM

$$\ln\left(H_k^{cs}(t\mid \mathbf{x}_k)\right) = s_k(\ln t; \boldsymbol{\gamma}_k, \mathbf{m}_{0k}) + \boldsymbol{\beta}_k^{cs} \mathbf{x}_k + \sum_{l=1}^{L} s_k(\ln t; \boldsymbol{\alpha}_{lk}, \mathbf{m}_{lk}) \mathbf{x}_{lk}$$

 $s_k(\ln t; \alpha_{lk}, \mathbf{m}_{lk}) \mathbf{x}_{lk}$: interaction between spline variables and covariates for TDEs

Example dataset

Load public-use prostate cancer dataset:

- . use "http://www.stata-journal.com/software/sj4-2/st0059/prostatecancer", clear
- . tab status

status	Freq.	Percent	Cum.
Censor	150	29.64	29.64
Cancer	155	30.63	60.28
CVD	141	27.87	88.14
Other	60	11.86	100.00
Total	506	100.00	

stpm2 [Lambert and Royston, 2009]

```
. stset time. failure(status == 1) id(id) scale(12) exit(time 60)
. stpm2 treatment, scale(hazard) df(4) eform nolog
Log likelihood =
                  -440.316
                                                 Number of obs
                                                                            506
                   exp(b)
                            Std. Err.
                                            z
                                                 P>|z|
                                                           [95% Conf. Interval]
xb
                 .6594084
                             .111509
                                         -2.46
                                                 0.014
                                                           .4733827
                                                                        .9185368
   treatment
                 3.389716
                             .4258797
                                          9.72
                                                 0.000
                                                           2.649838
                                                                       4.336179
       rcs1
       rcs2
                 .8879662
                            .0724157
                                         -1.46
                                                 0.145
                                                           .7567963
                                                                       1.041871
                 1.06315
                            .0411503
                                         1.58
                                                 0.114
                                                           .9854806
                                                                       1.146942
       rcs3
       rcs4
                 1.016818
                            .0199075
                                          0.85
                                                 0.394
                                                           .9785387
                                                                       1.056594
       cons
                  .229559
                            .0272468
                                        -12.40
                                                 0.000
                                                           .1819129
                                                                        .2896844
```

Note: Estimates are transformed only in the first equation.

. stcox treatment, nolog noshow

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
treatment	. 6602897	.1116672	-2.45	0.014	.4740025	.9197894

stpm2 [Lambert and Royston, 2009]

.9529595

1.027927

.17767

. stset time. failure(status == 2) id(id) scale(12) exit(time 60) . stpm2 treatment, scale(hazard) df(4) eform nolog Log likelihood = -448.73758Number of obs 506 exp(b) Std. Err. z P>|z| [95% Conf. Interval] xb 1,202808 .2047249 1.08 0.278 .8616223 1.679097 treatment 2.82908 .2642265 11.13 0.000 2.355841 3.397384 rcs1 rcs2 .8685486 .0544436 -2.250.025 .7681357 .9820878

-1.44

1.33

-12.95

0.151

0.185

0.000

.8923696

.986915

.1367912

1.017663

1.070644

.2307651

Note: Estimates are transformed only in the first equation.

.0319403

.0213538

.0237024

. stcox treatment, nolog noshow

_rcs3

cons

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
treatment	1.20334	.2048509	1.09	0.277	.8619538	1.679937

stpm2 [Lambert and Royston, 2009]

```
. stset time. failure(status == 3) id(id) scale(12) exit(time 60)
. stpm2 treatment, scale(hazard) df(4) eform nolog
Log likelihood = -231.45608
                                                 Number of obs
                                                                            506
                   exp(b)
                            Std. Err.
                                            z
                                                 P>|z|
                                                           [95% Conf. Interval]
xb
                 .6432149
                             .1737196
                                         -1.63
                                                 0.102
                                                           .3788467
                                                                       1.092066
   treatment
                 2.638735
                             .3351586
                                         7.64
                                                 0.000
                                                           2.057219
                                                                       3.384628
       rcs1
       rcs2
                 .7913665
                            .0590788
                                         -3.13
                                                 0.002
                                                            .683647
                                                                       .9160589
       _rcs3
                 .9369818
                             .0467358
                                         -1.30
                                                 0.192
                                                           .8497164
                                                                       1.033209
       rcs4
                 1.029843
                            .031817
                                         0.95
                                                 0.341
                                                           .9693337
                                                                        1.09413
                  .097687
                            .0179093
                                        -12.69
                                                 0.000
                                                           .0681998
                                                                        .1399235
       cons
```

Note: Estimates are transformed only in the first equation.

. stcox treatment, nolog noshow

_t	Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
treatment	.6460519	.1745103	-1.62	0.106	.3804893	1.096964

Estimating cause-specific CIFs after fitting FPMs

Cause-specific CIF, $F_k(t)$

$$F_k(t) = \int_0^t \exp\left(-\sum_{k=1}^K \int_0^t h_k^{cs}(u) du\right) h_k^{cs}(u) du$$

Estimating cause-specific CIFs after fitting FPMs

Cause-specific CIF, $F_k(t)$

$$F_k(t) = \int_0^t \exp\left(-\sum_{k=1}^K \int_0^t h_k^{cs}(u) du\right) h_k^{cs}(u) du$$

Must be obtained by numerical approximation:

- Trapezoid method stpm2cif [Hinchliffe and Lambert, 2013]
- Gauss-Legendre quadrature stpm2cr [Mozumder et al., 2017]

stpm2cif: Data setup

```
. expand 3 // augment data k = 3 times
. bysort id: gen _cause=_n
. //create dummy variables for each cause of death
. gen _cvd=_cause==2
. gen _other=_cause==3
. gen cancer= cause==1
. //create cause of death event indicator variable
. gen event=( cause==status)
. label values _cause status
. foreach cause in _cancer _cvd _other {
 2.
            gen treatment`cause´ = treatment*`cause´
 3. }
```

stpm2cif: Data setup

. list id status time treatment _cause _event in 1/9, sep(9)

	id	status	time	treatm_t	_cause	_event
1.	1	Censor	72	0	1	0
2.	1	Censor	72	0	2	0
3.	1	Censor	72	0	3	0
4.	2	Cancer	1	0	1	1
5.	2	Cancer	1	0	2	0
6.	2	Cancer	1	0	3	0
7.	3	CVD	40	1	1	0
8.	3	CVD	40	1	2	1
9.	3	CVD	40	1	3	0

stpm2cif: Data setup

```
. local knotstvc opt
. local bknotstvc opt
. local k = 1
. foreach cause in _cancer _cvd _other {
 2.
            stset time, failure(status == `k´) exit(time 60) scale(12)
 3.
            cap stpm2 treatment, df(4) scale(h) eform nolog
 4.
            estimates store stpm2`cause´
 5.
            local bhknots`cause´ `e(bhknots)´
            local boundknots`cause´ `e(boundary knots)´
 6.
            local knotstvc opt `knotstvc opt `cause `bhknots`cause `
 8.
            local bknotstvc_opt `bknotstvc_opt' `cause' `boundknots`cause''
 9
            local k = k' + 1
10. }
```

stpm2cif: Fitting the model

cvd

other

treatment other

(output omitted)

```
. stset time, failure( event == 1) exit(time 60) scale(12)
. stpm2 treatment cancer cancer treatment cvd cvd treatment other other ///
> , scale(h) knotstvc(`knotstvc opt´) bknotstvc(`bknotstvc opt´) ///
> tvc( cancer cvd other) rcsbaseoff nocons eform nolog
Log likelihood = -1120.5192
                                              Number of obs
                                                                      1,518
                      exp(b)
                              Std. Err.
                                             Z
                                                 P>|z|
                                                           [95% Conf. Interval]
xb
                    . 6593781
                              . 111504
                                        -2.46
                                                 0.014
                                                           . 4733607
                                                                       .9184951
treatment cancer
                    2295677
                              0272475
                                         -12.40
                                                 0.000
                                                           1819204
                                                                       2896945
        cancer
  treatment_cvd
                    1,202808
                             .2047249
                                        1.08
                                                0.278
                                                           8616223
                                                                       1.679097
```

-12.95

-1.63

-12.69

0.000

0.102

0.000

. 1367912

.3788467

.0681998

.2307651

1.092066

1399235

.0237024

.1737196

0179093

Note: Estimates are transformed only in the first equation.

. 17767

.6432149

.097687

stpm2cif: Post-estimation

```
. stpm2cif cancer cvd other, cause1(treatment_cancer 1 _cancer 1) ///
> cause2(treatment_cvd 1 _cvd 1) cause3(treatment_other 1 _other 1) ci
```



```
. stset time, failure(status == 1,2,3) exit(time 60) scale(12)
. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
> [cvd: treatment, scale(hazard) df(4)] ///
> [other: treatment, scale(hazard) df(4)], ///
> events(status) cause(1 2 3) cens(0) eform model(csh)
```

stpm2cr: Post-estimation

- . range newt 0 5 100
- . predict cifgq_trt1, cif at(treatment 1) timevar(newt) ci

Note on computational time

```
. expand 500 //now 253,000 observations
```

```
. replace time = time + runiform()*0.0001
```

. replace id = _n
variable id was int now long

	Time (secs)
stpm2cr model	52.60
stpm2 (stacked data)	76.59
stpm2cr predict (w/Cls)	2.56
stpm2cif (w/Cls)	11.10

multistate [Crowther and Lambert, 2017]

- Written mainly by Michael (& Paul) for more complex multi-state models e.g. illness-death models
- Competing risks is a special case of multi-state models
- Can use multistate package to obtain equivalent non-parametric estimates and fit parametric models in presence of competing risks
- Uses a simulation approach for calculating transition probabilities i.e. cause-specific CIFs

Summary of FPM tools for estimating cause-specific CIFs using CSHs

- Post-estimation command, stpm2cif
 - Requires augmenting data before stpm2
 - Fitting a single model means interpretation is difficult and more room for errors
 - Uses a basic numerical integration method slow for larger datasets

Summary of FPM tools for estimating cause-specific CIFs using CSHs

- Post-estimation command, stpm2cif
 - Requires augmenting data before stpm2
 - Fitting a single model means interpretation is difficult and more room for errors
 - Uses a basic numerical integration method slow for larger datasets
- Using stpm2cr as a wrapper followed by predict
 - Fits separate stpm2 models for each cause of death without data augmentation
 - Uses quicker numerical integration method
 - Can obtain other useful predictions e.g. restricted mean lifetime/comparative predictions

Summary of FPM tools for estimating cause-specific CIFs using CSHs

- Via the predictms command provided as a part of the multistate package
 - Uses a simulation approach. Can alternatively use AJ estimator to save on computational time
 - Can also be used without requiring msset
 - Extremely versatile has some very useful features and post-estimation options

What about modelling covariate effects on the risk of

dying from a particular cause?

Subdistribution hazards

Subdistribution hazard (SDH) rate, $h_k^{sd}(t)$

The instantaneous rate of failure at time t from cause D = k amongst those who have not died, or have died from any of the other causes, where $D \neq k$

SDH relationship with cause-specific CIF

Cause-specific CIF, $F_k(t)$

$$F_k(t) = 1 - \exp\left[-\int_0^t h_k^{sd}(u) \mathrm{d}u\right]$$

SDH relationship with cause-specific CIF

Cause-specific CIF, $F_k(t)$

$$F_k(t) = 1 - \exp\left[-\int_0^t h_k^{sd}(u) du\right]$$

Note

$$1 - F_k(t) = P(D \neq k) + S_k^{sd}(t) \neq S_k^{cs}(t)$$

FPMs on (log-cumulative) SDH scale

Log-cumulative SDH FPM

$$\ln\left(H_k^{sd}(t\mid \mathbf{x}_k)\right) = s_k(\ln t; \boldsymbol{\gamma}_k, \mathbf{m}_{0k}) + \boldsymbol{\beta}_k^{sd}\mathbf{x}_k + \sum_{l=1}^{L} s_k(\ln t; \boldsymbol{\alpha}_{lk}, \mathbf{m}_{lk})\mathbf{x}_{lk}$$

- 1. Apply time-dependent censoring weights to the likelihood function for each cause k (stcrprep) [Lambert et al., 2017]
- 2. Model all *k* causes of death simultaneously directly using the full likelihood function (stpm2cr) [Mozumder et al., 2017; Jeong and Fine, 2007]

Time-dependent censoring weights

- Need to consider those who have already died from other competing causes of death in risk-set
- Calculate missing censoring times for those that died from other causes by applying time-dependent weights to likelihood
- Influence of weights decreases over-time as the probability of being censored increases
- Further details given by Lambert et al. [2017] and Geskus [2011]

stcrprep

```
. stset time, failure(status == 1,2,3) exit(time 60) scale(12) id(id)
. gen cod2 = cond(_d==0,0,status)
. stcrprep, events(cod2) keep(treatment ) trans(1 2 3) wtstpm2 censcov(treatment) every(1)
. gen event = cod2 == failcode
. stset tstop [iw=weight_c], failure(event) enter(tstart) noshow
  (output omitted)
```

stcrprep

```
. stpm2 treatment_cancer _cancer treatment_cvd _cvd treatment_other _other ///
```

- > , scale(h) knotstvc(`knotstvc_opt') bknotstvc(`bknotstvc_opt') ///
- > tvc(_cancer _cvd _other) rcsbaseoff nocons eform nolog note: delayed entry models are being fitted

Log likelihood = -1228.025

Number of obs = 3,688

	exp(b)	Std. Err.	z	P> z	[95% Conf. Interval]
xb					
treatment_cancer	.6408643	.1083623	-2.63	0.009	.4600852 .8926761
_cancer	.3060732	.0335208	-10.81	0.000	.2469463 .3793569
treatment_cvd	1.329932	.2263497	1.68	0.094	.9527038 1.856525
_cvd	.2029639	.0262824	-12.32	0.000	.1574686 .2616034
treatment_other	.6740861	.1819979	-1.46	0.144	.3970979 1.144282
_other	.1034306	.0183681	-12.78	0.000	.0730273 .1464916
$(output\ omitted)$					

Note: Estimates are transformed only in the first equation.

- . predict cif_stcrprep_cancer, at(treatment_cancer 1 _cancer 1) zeros failure timevar(tempt)
- . predict cif_stcrprep_cvd, at(treatment_cvd 1 _cvd 1) zeros failure timevar(tempt)
- . predict cif_stcrprep_other, at(treatment_other 1 _other 1) zeros failure timevar(tempt)

```
. stset time, failure(status == 1,2,3) exit(time 60) scale(12)
. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
> [cvd: treatment, scale(hazard) df(4)] ///
> [other: treatment, scale(hazard) df(4)], ///
> events(status) cause(1 2 3) cens(0) eform
    (output omitted)
. predict cifgq_trt1, cif at(treatment 1) timevar(tempt)
Calculating predictions for the following causes: 1 2 3
```

```
. stset time, failure(status == 1,2,3) exit(time 60) scale(12)
. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
> [cvd: treatment, scale(hazard) df(4)] ///
> [other: treatment, scale(hazard) df(4)], ///
> events(status) cause(1 2 3) cens(0) eform
   (output omitted)
. predict cifgq_trt1, cif at(treatment 1) timevar(tempt)
Calculating predictions for the following causes: 1 2 3
```

Above is not comparable with time-dependent censoring weights approach as we assume proportionality for the competing causes of death.

```
> [other: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)], ///
> events(status) cause(1 2 3) cens(0) eform
  (output omitted)
Log likelihood = -1117.3418
                                                 Number of obs
                                                                              506
                                                                      [95% Conf. Interval]
                             exp(b)
                                      Std. Err.
                                                           P>|z|
                                                      Z
cancer
            treatment
                            .647454
                                      . 1094638
                                                   -2.57
                                                           0.010
                                                                       . 464834
                                                                                  .9018201
  (output omitted)
                _cons
                           . 1889881
                                      .0229604
                                                 -13.71
                                                           0.000
                                                                      . 1489433
                                                                                  . 2397993
  (output omitted)
```

. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///

> [cvd: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///

	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
(output omitted)	ı					
cvd						
treatment	1.336129	.2273682	1.70	0.089	.9571939	1.865077
(output omitted)	1					
_cons	.1366028	.0187788	-14.48	0.000	.1043385	.178844
(output omitted)	1					

	exp(b)	Std. Err.	z	P> z	[95% Conf.	Interval]
(output omitted)						
other						
treatment	.6771057	.1827954	-1.44	0.149	.3988974	1.149349
(output omitted)						
_cons	.0720086	.0138407	-13.69	0.000	.0494056	.1049525

Comparing stcrprep and stpm2cr

Comparison of computational time (to all *k* causes)

```
. expand 100 //now 50,060 observations
```

```
. replace time = time + runiform()*0.0001
```

. replace id = _n
variable id was int now long

	Time
stcrreg (total)	53 mins
stcrprep (total)	1 min
stpm2cr	17 secs

Summary of FPM tools for estimating cause-specific CIFs on (log-cumulative) SDH scale

- Using stpm2 with time-dependent censoring weights
 - Need to prepare data first using stcrprep
 - Can use standard post-estimation commands such aspredict (and stpm2_standsurv) as usual after stpm2
 - Computationally intensive for larger datasets
 - Requires more work for the user increases room for error
- Post-estimation after stpm2cr for models on cause-specific CIF scale with predict
 - A single line of code to fit model
 - Does not require restructuring of data
 - Other predictions easy to obtain e.g. restricted mean lifetime
 - SEs/CIs obtained with analytically derived derivatives for the delta method computationally quicker

References i

- P. K. Andersen. Decomposition of number of life years lost according to causes of death. *Statistics in Medicine*, 32:5278--85, Jul 2013.
- J. Beyersmann, M. Dettenkofer, H. Bertz, and M. Schumacher. A competing risks analysis of bloodstream infection after stem-cell transplantation using subdistribution hazards and cause-specific hazards. *Statistics in Medicine*. 26(30):5360--5369, Dec. 2007.
- J. Beyersmann, A. Latouche, A. Buchholz, and M. Schumacher. Simulating competing risks data in survival analysis. *Stat Med*, 28(6):956--971, 2009.
- M. J. Crowther and P. C. Lambert. Parametric multistate survival models: Flexible modelling allowing transition-specific distributions with application to estimating clinically useful measures of effect differences. *Statistics in medicine*, 36(29):4719--4742, 2017.
- J. P. Fine and R. J. Gray. A proportional hazards model for the subdistribution of a competing risk. *Journal* of the American Statistical Association, 446:496--509., 1999.

References ii

- R. B. Geskus. Cause-specific cumulative incidence estimation and the Fine and Gray model under both left truncation and right censoring. *Biometrics*, 67(1):39--49, Mar 2011.
- S. R. Hinchliffe and P. C. Lambert. Extending the flexible parametric survival model for competing risks. *The Stata Journal*, 13:344--355, 2013.
- J.-H. Jeong and J. P. Fine. Parametric regression on cumulative incidence function. *Biostatistics*, 8(2): 184--196, Apr 2007.
- P. C. Lambert and P. Royston. Further development of flexible parametric models for survival analysis. *The Stata Journal*, 9:265--290, 2009.
- P. C. Lambert, S. R. Wilkes, and M. J. Crowther. Flexible parametric modelling of the cause-specific cumulative incidence function. *Statistics in medicine*, 36(9):1429--1446, 2017.
- A. Latouche, A. Allignol, J. Beyersmann, M. Labopin, and J. P. Fine. A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. *J Clin Epidemiol*, 66(6): 648-653, Jun 2013.

References iii

- S. I. Mozumder, M. J. Rutherford, P. C. Lambert, et al. A flexible parametric competing-risks model using a direct likelihood approach for the cause-specific cumulative incidence function. *Stata Journal*, 17(2): 462-489, 2017.
- P. Royston and M. K. B. Parmar. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. *Statistics in Medicine*, 21(15):2175--2197, Aug 2002.
- P. Royston and M. K. B. Parmar. The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt. *Stat Med*, 30(19): 2409--2421, Aug 2011.
- P. Royston and M. K. B. Parmar. Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. *BMC medical research methodology*, 13:152, 2013. ISSN 1471-2288.