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Competing risks
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Cause-specific hazard (CSH) rate, h{*(t)
Instantaneous mortality (failure) rate from cause k, given that the individual is still
alive uptotime t
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CSH relationship with cause-specific CIF

Cause-specific CIF, F(t)
Probability a patient will die from cause D = k by time t whilst also being at risk of
dying from other competing causes of death
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CSH relationship with cause-specific CIF

Cause-specific CIF, F(t)

Fi(t) = /0 S(u)hE(u)du

K K ‘
S(t) = [ Se(t) = exp (- > /O hf(u)du)

k=1 k=1
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Approaches for modelling (all) CSHs in Stata



Flexible parametric survival models (FPMs) [Royston and Parmar, 2002]

= Models and more accurately captures complex shapes of the (log-cumulative)
baseline hazard function

= A generalisation of the Weibull distribution is used with restricted cubic splines
(RCS) that allows for more flexibility

Cause-specific log-cumulative PH FPM

In (His(t ’ Xk)) = sk(ln t Yk, mOk) 4F ﬂka

sk(In t; vk, mog): baseline restricted cubic spline function on log-time
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Flexible parametric survival models (FPMs) [Royston and Parmar, 2002]

= Models and more accurately captures complex shapes of the (log-cumulative)
baseline hazard function

= A generalisation of the Weibull distribution is used with restricted cubic splines
(RCS) that allows for more flexibility

= Canalsoeasily include time-dependent effects (TDE)

Cause-specific log-cumulative non-PH FPM
E

In (H?(t | xk)) = sk(In t; vk, mok) + BExk + Z sk(In t; o, M) X
=1

sk(In t; e, my)x i interaction between spline variables and covariates for TDEs
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Example dataset

Load public-use prostate cancer dataset:

. use "http://www.stata-journal.com/software/sj4-2/st0059/prostatecancer", clear

. tab status
status Freq. Percent Cum.
Censor 150 29.64 29.64
Cancer 155 30.63 60.28
CVD 141 27.87 88.14
Other 60 11.86 100.00
Total 506 100.00
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stpm2 [Lambert and Royston, 2009]

. stset time, failure(status == 1) id(id) scale(12) exit(time 60)

. stpm2 treatment, scale(hazard) df(4) eform nolog

Log likelihood = -440.316 Number of obs = 506
exp(b)  Std. Err. z P>|z| [95% Conf. Interval]

xb
treatment .6594084 .111509 -2.46 0.014 .4733827 .9185368
_rcsi 3.389716 .4258797 9.72 0.000 2.649838 4.336179
_rcs2 .8879662 .0724157 -1.46 0.145 .7567963 1.041871
_rcs3 1.06315 .0411503 1.58 0.114 .9854806 1.146942
_rcséd 1.016818 .0199075 0.85 0.394 .9785387 1.056594
_cons .229559 .0272468 -12.40 0.000 .1819129 .2896844

Note: Estimates are transformed only in the first equation.

. stcox treatment, nolog noshow

t Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall

treatment .6602897 .1116672 -2.45 0.014 .4740025 .9197894
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stpm2 [Lambert and Royston, 2009]

. stset time, failure(status == 2) id(id) scale(12) exit(time 60)

. stpm2 treatment, scale(hazard) df(4) eform nolog

Log likelihood = -448.73758 Number of obs = 506
exp(b)  Std. Err. z P>|z| [95% Conf. Interval]

xb
treatment 1.202808 .2047249 1.08 0.278 .8616223 1.679097
_rcsl 2.82908 .2642265 11.13 0.000 2.355841 3.397384
_rcs2 .8685486 .0544436 2M825! 0.025 . 7681357 .9820878
_rcs3 .9529595 .0319403 -1.44 0.151 .8923696 1.017663
_rcséd 1.027927 .0213538 1.33 0.185 .986915 1.070644
_cons 17767 .0237024 -12.95 0.000 .1367912 .2307651

Note: Estimates are transformed only in the first equation.

. stcox treatment, nolog noshow

t Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall

treatment 1.20334 .2048509 1.09 0.277 .8619538 1.679937
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stpm2 [Lambert and Royston, 2009]

. stset time, failure(status == 3) id(id) scale(12) exit(time 60)

. stpm2 treatment, scale(hazard) df(4) eform nolog

Log likelihood = -231.45608 Number of obs = 506
exp(b)  Std. Err. z P>|z| [95% Conf. Interval]

xb
treatment .6432149 .1737196 -1.63 0.102 .3788467 1.092066
_rcsl 2.638735 .3351586 7.64 0.000 2.057219 3.384628
_rcs2 .7913665 .0590788 -3.13 0.002 .683647 .9160589
_rcs3 .9369818 .0467358 -1.30 0.192 .8497164 1.033209
_rcséd 1.029843 .031817 0.95 0.341 .9693337 1.09413
_cons .097687 .0179093 -12.69 0.000 .0681998 .1399235

Note: Estimates are transformed only in the first equation.

. stcox treatment, nolog noshow

t Haz. Ratio Std. Err. z P>|z]| [95% Conf. Intervall

treatment .6460519 .1745103 =il G2 0.106 .3804893 1.096964
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Estimating cause-specific CIFs after fitting FPMs

Cause-specific CIF, F(t)

t Kot
Fi(2) _/0 exp (—Z/O his(u)du> h&(u)du
k=1
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Estimating cause-specific CIFs after fitting FPMs

Cause-specific CIF, F(t)

t Kt
Fi(2) _/0 exp <_Z/o his(u)du> h(u)du
k=1

Must be obtained by numerical approximation:

» Trapezoid method - stpm2cif [Hinchliffe and Lambert, 2013]

» Gauss-Legendre quadrature - stpm2cr [Mozumder et al., 2017]
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stpm2cif: Data setup

expand 3 // augment data k = 3 times
. bysort id: gen _cause=_n

//create dummy variables for each cause of death
. gen _cvd=_cause==

. gen _other=_cause==
. gen _cancer=_cause==

//create cause of death event indicator variable
. gen _event=(_cause==status)

label values _cause status

foreach cause in _cancer _cvd _other {
Bo gen treatment cause” = treatment* cause”

3.k
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stpm2cif: Data setup

. list id status time treatment _cause _event in 1/9, sep(9)

id status time treatm_t _cause _event
o 1 Censor 72 0 1 0
Aa 1 Censor 72 0 2 0
8o 1 Censor 72 0 & 0
4. 2 Cancer 1 0 1 1
5. 2 Cancer 1 0 2 0
6. 2 Cancer 1 0 & 0
o 3 CVD 40 1 1 0
8. 3 CVD 40 1 2 1
9. 3 CVD 40 1 3 0
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stpm2cif: Data setup

. local knotstvc_opt
. local bknotstvc_opt
. local k = 1

. foreach cause in _cancer _cvd _other {

2. stset time, failure(status == "k”) exit(time 60) scale(12)

3. cap stpm2 treatment, df(4) scale(h) eform nolog

4. estimates store stpm2 cause”

5. local bhknots cause” “e(bhknots) "~

6. local boundknots cause” “e(boundary_knots)”

7. local knotstvc_opt “knotstvc_opt” “cause” “bhknots cause””

8. local bknotstvc_opt “bknotstvc_opt” “cause” “boundknots cause””
9. local k = k™ + 1

10. }
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stpm2cif: Fitting the model

. stset time, failure(_event == 1) exit(time 60) scale(12)

. stpm2 treatment_cancer _cancer treatment_cvd _cvd treatment_other _other ///
> , scale(h) knotstvc( knotstvc_opt”) bknotstvc( bknotstvc_opt”) ///
> tvc(_cancer _cvd _other) rcsbaseoff nocons eform nolog

Log likelihood = -1120.5192 Number of obs = 1,518

exp(b)  Std. Err. z P>|z| [95% Conf. Intervall
xb

treatment_cancer .6593781 .111504 -2.46 0.014 .4733607 .9184951
_cancer .2295677 .0272475 -12.40 0.000 .1819204 .2896945
treatment_cvd 1.202808 .2047249 1.08 0.278 .8616223 1.679097
_cvd .17767 .0237024 -12.95 0.000 .1367912 .2307651
treatment_other .6432149 .1737196 -1.63 0.102 .3788467 1.092066
_other .097687 .0179093 -12.69 0.000 .0681998 .1399235

(output omitted)

1

Note: Estimates are transformed only in the first equation. 8/25



stpm2cif: Post-estimation

stpm2cif cancer cvd other, causel(treatment_cancer 1 _cancer 1) ///
> cause2(treatment_cvd 1 _cvd 1) cause3(treatment_other 1 _other 1) ci

stpm2cif
1.00 Patients on treatment
Cancer
Other
0.80 CVD
o
=1
5
< 0.604
S
=
% 0.40
2
2
=9
0.20
0.00 T T T T 1

) 1 2 3 4 5
Years since diagnosis
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stset time, failure(status == 1,2,3) exit(time 60) scale(12)

stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
> [cvd: treatment, scale(hazard) df(4)] ///
> [other: treatment, scale(hazard) df(4)]1, ///
> events(status) cause(l 2 3) cens(0) eform model(csh)
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stpm2cr: Post-estimation

range newt 0 5 100

predict cifgq_trtl, cif at(treatment 1) timevar(mewt) ci

stpm2cif vs stpm2cr
Patients on treatment

0.401 Cancer (stpm2cif) Cancer (stpm2cr)
Other (stpm2cif) ~ ————- Other (stpm2cr)
CVD (stpm2cif) CVD (stpm2cr)
= 0.30
<
51
=]
o
=}
Z 0.20
=
g
Q2
<}
£
0.104
0.004
T T T T T T
0 1 2 3 4 5

Years since diagnosis
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Note on computational time

. expand 500 //now 253,000 observations
. replace time = time + runiform()*0.0001

. replace id = _n
variable id was int now long

Time (secs)
stpm2cr model 52.60
stpm2 (stacked data) 76.59
stpm2cr predict (w/Cls) 2.56
stpm2cif (w/ Cls) 11.10
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multistate [Crowther and Lambert, 2017]

= Written mainly by Michael (& Paul) for more complex multi-state models e.g.
illness-death models

= Competing risks is a special case of multi-state models

= Canusemultistate package to obtain equivalent non-parametric estimates and
fit parametric models in presence of competing risks

= Uses asimulation approach for calculating transition probabilities i.e.
cause-specific ClIFs
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Summary of FPM tools for estimating cause-specific CIFs using CSHs

= Post-estimation command, stpm2cif

= Requires augmenting data before stpm2
= Fitting a single model means interpretation is difficult and more room for errors
= Uses a basic numerical integration method - slow for larger datasets
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Summary of FPM tools for estimating cause-specific CIFs using CSHs

= Post-estimation command, stpm2cif
= Requires augmenting data before stpm2
= Fitting a single model means interpretation is difficult and more room for errors
= Uses a basic numerical integration method - slow for larger datasets

= Using stpm2cr as a wrapper followed by predict
= Fits separate stpm2 models for each cause of death without data augmentation
= Uses quicker numerical integration method
= Canobtain other useful predictions e.g. restricted mean lifetime/comparative

predictions
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Summary of FPM tools for estimating cause-specific CIFs using CSHs

= Viathe predictms command provided as a part of themultistate package
= Uses asimulation approach. Can alternatively use AJ estimator to save on
computational time
= Canalso be used without requiringmsset
= Extremely versatile - has some very useful features and post-estimation options
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What about modelling covariate effects on the risk of
dying from a particular cause?



Subdistribution hazards

Alive hsd(t) Death
or from cause
Death from cause k = 2 k=1

Alive hsd(t) Death
or from cause
Death from cause k=1 k=2

Subdistribution hazard (SDH) rate, h3(t)

The instantaneous rate of failure at time tfrom cause D = kamongst those who have
not died, or have died from any of the other causes, where D # k
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SDH relationship with cause-specific CIF

Cause-specific CIF, F(t)

Filt) = 1— exp [— / t hid(u)du]
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SDH relationship with cause-specific CIF

Cause-specific CIF, F(t)

Filt) = 1— exp [— / t hid(u)du]

Note

1 - Fi(t) = P(D # k) + Si(1) # SE(1)
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FPMs on (log-cumulative) SDH scale

Log-cumulative SDH FPM

E
In (Hid(t ’ Xk)) = sk(ln t;, Yk, mOk) =+ ﬂidxk + Z sk(ln t, oy, m/k)x/k
=1

1. Apply time-dependent censoring weights to the likelihood function for each cause
k (stcrprep) [Lambert et al., 2017]

2. Model all kcauses of death simultaneously directly using the full likelihood
function (stpm2cr) [Mozumder et al., 2017; Jeong and Fine, 2007]
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Time-dependent censoring weights

= Need to consider those who have already died from other competing causes of
deathinrisk-set

= Calculate missing censoring times for those that died from other causes by
applying time-dependent weights to likelihood

= |nfluence of weights decreases over-time as the probability of being censored
increases

= Further details given by Lambert et al. [2017] and Geskus [2011]
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stset time, failure(status == 1,2,3) exit(time 60) scale(12) id(id)

. gen cod2 = cond(_d==0,0,status)

stcrprep, events(cod2) keep(treatment ) trans(l 2 3) wtstpm2 censcov(treatment) every(1l)
. gen event = cod2 == failcode

stset tstop [iw=weight_c], failure(event) enter(tstart) noshow

(output omitted )
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. stpm2 treatment_cancer _cancer treatment_cvd _cvd treatment_other _other ///
>, scale(h) knotstvc(“knotstvc_opt”) bknotstvc( bknotstvc_opt”) ///
> tvc(_cancer _cvd _other) rcsbaseoff nocons eform nolog
note: delayed entry models are being fitted

Log likelihood = -1228.025 Number of obs = 3,688

exp(b)  Std. Err. z P>|z| [957% Conf. Intervall
xb

treatment_cancer .6408643 .1083623 -2.63  0.009 .4600852 .8926761
_cancer .3060732 .0335208 -10.81 0.000 2469463 .3793569
treatment_cvd 1.329932 .2263497 1.68 0.094 .9527038 1.856525
_cvd .2029639 .0262824  -12.32 0.000 .1574686 .2616034
treatment_other .6740861 .1819979 -1.46 0.144 .3970979 1.144282
_other .1034306 .0183681 -12.78 0.000 .0730273 .1464916

(output omitted)

Note: Estimates are transformed only in the first equation.

. predict cif_stcrprep_cancer, at(treatment_cancer 1 _cancer 1) zeros failure timevar(tempt)

. predict cif_stcrprep_cvd, at(treatment_cvd 1 _cvd 1) zeros failure timevar(tempt)

. predict cif_stcrprep_other, at(treatment_other 1 _other 1) zeros failure timevar(tempt)



stset time, failure(status == 1,2,3) exit(time 60) scale(12)

stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
[cvd: treatment, scale(hazard) df(4)] ///

> [other: treatment, scale(hazard) df(4)]1, ///

> events(status) cause(l 2 3) cens(0) eform
(output omitted)

. predict cifgq_trtl, cif at(treatment 1) timevar(tempt)
Calculating predictions for the following causes: 1 2 3
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. stset time, failure(status == 1,2,3) exit(time 60) scale(12)

. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///
> [cvd: treatment, scale(hazard) df(4)] ///
> [other: treatment, scale(hazard) df(4)]1, ///
> events(status) cause(l 2 3) cens(0) eform
(output omitted)

. predict cifgq_trtl, cif at(treatment 1) timevar(tempt)
Calculating predictions for the following causes: 1 2 3

Above is not comparable with time-dependent censoring weights approach as we
assume proportionality for the competing causes of death
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. stpm2cr [cancer: treatment, scale(hazard) df(4)] ///

> [cvd: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///

> [other: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)], ///

> events(status) cause(l 2 3) cens(0) eform
(output omitted )

Log likelihood = -1117.3418

Number of obs

506

exp(b)  Std. Err. z P>|z| [95% Conf. Intervall
cancer
treatment .647454 .1094638 -2.57 0.010 .464834 .9018201
(output omitted)
-13.71 0.000 .1489433 .2397993

_cons ‘ .1889881 .0229604
(output omitted)

1
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. stpm2cr [cancer: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [cvd: treatment, scale(hazard) df(4)] ///
> [other: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)], ///
> events(status) cause(l 2 3) cens(0) eform
(output omitted )

exp(b)  Std. Err. z P>|z| [95% Conf. Intervall
(output omitted )
cvd
treatment 1.336129 .2273682 1.70 0.089 .9571939 1.865077
(output omitted)

_cons ‘ .1366028 .0187788 -14.48 0.000 .1043385 .178844
(output omitted )

1
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. stpm2cr [cancer: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [cvd: treatment, scale(hazard) df(4) tvc(treatment) dftvc(3)] ///
> [other: treatment, scale(hazard) df(4)1, ///
> events(status) cause(l 2 3) cens(0) eform
(output omitted )

exp(b)  Std. Err. z P>|z| [95% Conf. Intervall
(output omitted )
other
treatment .6771057 .1827954 -1.44 0.149 .3988974 1.149349
(output omitted)

_cons ‘ .0720086 .0138407 -13.69  0.000 .0494056 .1049525
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Comparing stcrprep and stpm2cr

stcrprep vs stpm2cr (sdh) - adjusted

Patients on treatment

0.40
Cancer (stpm2cr) Cancer (stcrprep)
77777 CVD (stpm2cr) CVD (stcrprep)
Other (stpm2cr) Other (stcrprep)

0.30
k=]
<
o
T
e
=}
2 0.20-
c
2
o
=
a~

o104 ]

0.00 +— ‘ ‘ ‘ ‘

0 1 2 3 4 5

Years since diagnosis
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Comparison of computational time (to all k causes)

. expand 100 //now 50,060 observations

. replace time = time + runiform()#*0.0001

. replace id = _n

variable id was int now long

Time
stcrreg (total) 53 mins
stcrprep (total) 1 min
stpm2cr 17 secs
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Summary of FPM tools for estimating cause-specific CIFs on (log-

cumulative) SDH scale

= Using stpm2 with time-dependent censoring weights

Need to prepare data first using stcrprep

Can use standard post-estimation commands such aspredict (and
stpm2_standsurv) as usual after stpm2

Computationally intensive for larger datasets

Requires more work for the user - increases room for error

= Post-estimation after stpm2cr for models on cause-specific CIF scale with
predict

A single line of code to fit mode

Does not require restructuring of data

Other predictions easy to obtain e.g. restricted mean lifetime

SEs/Cls obtained with analytically derived derivatives for the delta method -

computationally quicker
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