merlin: Mixed effects regression for linear, non-linear and user-defined models

Stata Nordic and Baltic Meeting Oslo, 12th September 2018

Michael J. Crowther

Biostatistics Research Group, Department of Health Sciences, University of Leicester, UK, michael.crowther@le.ac.uk @Crowther_MJ

Funding: MRC (MR/P015433/1)

the plan

- the motivation
- the past
- the goal
- the example
- the family
- the surprise (at least it was last week)
- the future

the motivation			

- More data \rightarrow more questions
 - need for appropriate statistical modelling techniques, and implementations

the motivation			

- More data \rightarrow more questions
 - need for appropriate statistical modelling techniques, and implementations
- Growth in access to EHR
 - biomarkers < patients < GP practice area < geographical regions...

- More data \rightarrow more questions
 - need for appropriate statistical modelling techniques, and implementations
- Growth in access to EHR
 - biomarkers < patients < GP practice area < geographical regions...
- The standard challenges
 - time-dependent effects, non-linear covariate effects

- More data \rightarrow more questions
 - need for appropriate statistical modelling techniques, and implementations
- Growth in access to EHR
 - biomarkers < patients < GP practice area < geographical regions...
- The standard challenges
 - time-dependent effects, non-linear covariate effects
- The neglected challenges
 - Within-patient variability
 - Informative observations times

- More data \rightarrow more questions
 - need for appropriate statistical modelling techniques, and implementations
- Growth in access to EHR
 - biomarkers < patients < GP practice area < geographical regions...
- The standard challenges
 - time-dependent effects, non-linear covariate effects
- The neglected challenges
 - Within-patient variability
 - Informative observations times

We need modelling frameworks that can accommodate a lot of different things

the motivation			

Joint longitudinal-survival models

Linking via - current value, gradient, AUC, random effects...

the motivation			

Joint longitudinal-survival models - extensions

- Competing risks
- Different types of outcomes
- Multiple continuous outcomes
- Delayed entry
- Recurrent events and a terminal event
- Prediction
- Many others...

the motivation			

Joint longitudinal-survival models - software

- stjm in Stata
- gsem in Stata
- frailtypack in R
- joineR in R
- JM and JMBayes in R
- Many others...

the motivation			

(My) Methods development - software

- stjm joint longitudinal-survival models
- stmixed multilevel survival models
- stgenreg general parametric survival models

• ...

the motivation			

(My) Methods development - software

- stjm joint longitudinal-survival models
- stmixed multilevel survival models
- stgenreg general parametric survival models

• ...

Each new project brings a new code base to maintain...could I make my life easier?

the past			

the past

- last year I introduced megenreg
- megenreg fitted mixed effects generalised regression models
- megenreg was awesome...but

the past			

the past

- last year I introduced megenreg
- megenreg fitted mixed effects generalised regression models
- megenreg was awesome...but

I really hated the name

the past			

Michael Crowther @Crowther_MJ · Apr 16

 \sim

In the midst of a rewrite of the <u>#megenreg</u> engine, plus lots of extensions. Building up to release makes me think a rebrand is needed...

71%	merlin
14%	forge
7%	meregress
8%	Keep thinking

14 votes · Final results

the past			

Some people were not so keen...

I think FORGE is better than MERLIN because that could sound a bit like it's coming from a nerd who likes playing fantasy games in mum's basement!

Mar 28

the past			

Mixed Effects Regression for LInear, Non-linear and user-defined models

merlin

	the goal		

the goal

- multiple outcomes of varying types
- measurement schedule can vary across outcomes
- any number of levels and random effects
- sharing and linking random effects between outcomes
- sharing functions of the expected value of other outcomes
- a reliable estimation engine
- easily extendable by the user
- ...

a unified framework for data analysis and methods development

	the example		

the example

- there's no equations in this talk
- there's 14 models
- each of them is applied to the same dataset
- most of them can be considered *new* models
- we can fit all of them with a single line of code

		the example		

- data from 312 patients with PBC collected at the Mayo Clinic 1974-1984 (Murtaugh et al. (1994))
- 158 randomised to receive D-penicillamine and 154 to placebo
- survival outcome is all-cause death, with 140 events observed
 - we're going to pretend we have competing causes of death cancer and other causes
- 1945 measurements of serum bilirubin, among other things

	the example		

the data

id	time	logb	prothr~n	trt	stime	cancer	other
1	0	2.674149	12.2	D-penicil	1.09517	1	0
1	.525682	3.058707	11.2	D-penicil	•	•	•
2	0	.0953102	10.6	D-penicil	14.1523	0	1
2	.498302	2231435	11	D-penicil	•		
2	.999343	0	11.6	D-penicil	•		
2	2.10273	.6418539	10.6	D-penicil			
2	4.90089	.9555114	11.3	D-penicil	•		
2	5.88928	1.280934	11.5	D-penicil			
2	6.88588	1.435084		D-penicil			
2	7.8907	1.280934		D-penicil			
2	8.83255	1.526056		D-penicil	•	•	•

			the example			
a moo	del					
merlin (1	C	time , family(gaus	sian)	/// cov /// opt	serum bil: ariate ions tribution	irubin

			the example			
a mod	-					
merlin (1)	ti ti	ime ime#trt amily(gaus:	sian)	/// cov /// int /// opt	serum bil ariate eraction ions tribution	irubin

			the example			
a mo	del					
merlin (i i I	time time#trt M1[id]@1 , family(gaus	sian)	/// cov /// int /// ran /// opt	eraction dom interc	

			the example			
a mo	del					
merlin ((logb	time time#trt M1[id]@1 time#M2[id] , family(gaus		/// cov /// int /// ran /// ran /// opt	eraction dom interc dom slope	
)					

the motivation	the past	the goal	the example	the family	the surprise	the future
a mod	lel					
merlin (1) (p)	t t M t f oro r	ime ime#trt 1[id]@1 ime#M2[id] amily(gaus cs(time, d family(ga	sian) f(3))	/// cov /// int /// ran /// opt /// dis /// /// pro /// cov	eraction dom interco dom slope ions tribution thrombin in	ept

the motivation	the pas	st the goal	the example	the family	the surprise	the future
a m	odel					
merlin	(logb)	time time#trt M1[id]@1 time#M2[id]@ , family(gauss		/// cc /// in /// ra /// ra /// op	og serum bili ovariate uteraction undom interce undom slope otions .stribution	
	(pro)	rcs(time, d: M3[id]@1 , family(gan		/// cc /// ra	othrombin in ovariate undom effect stribution	dex

			the example			
a m	odel					
merlin	(logb	time time#trt M1[id]@1 time#M2[id] , family(gauss		/// co /// ir /// ra /// ra /// op	og serum bili ovariate nteraction andom interce andom slope otions istribution	
) (pro) , covaria	rcs(time, d: M3[id]@1 , family(gau	mma)	/// cc /// ra /// di	cothrombin in ovariate andom effect istribution ain options cv	ıdex

			the example			
a m	odel					
merlin	(logb	time time#trt M1[id]@1 time#M2[id]@ , family(gauss		/// /// ///	log serum bil covariate interaction random interco random slope options distribution	
		rcs(time, df M3[id]@1 , family(gan nce(unstructu ibution(t) df	E(3)) mma) mred)	/// 1 /// 1 /// 1 /// 1	prothrombin in covariate random effect distribution main options	ndex

			the example		
a m	odel				
merlin) (pro) (stime) , covarian	<pre>time time#trt M1[id]01 time#M2[id]0 , family(gauss rcs(time, d: M3[id]01 , family(gaus) trt , family(rp,</pre>	sian) f(3)) nma) df(3) ilure(other)) ured)	<pre>log serum bilirubin covariate interaction random intercept random slope options distribution prothrombin index covariate random effect distribution response + covariate distribution event indicator main options vcv re dist.</pre>	

			the example			
a m	odel					
merlin) (pro) (stime) , covarian	time time#trt M1[id]@1 time#M2[id]d , family(gauss M3[id]@1 , family(gau trt dEV[logb] E , family(rp family(rp family(rp) family(rp)	sian) f(3)) nma) /[pro] , df(3) ilure(other)) ured)	<pre>/// /// /// /// /// /// /// /// /// //</pre>	<pre>log serum biliruk covariate interaction random intercept random slope options distribution prothrombin index covariate random effect distribution response + covaria associations distribution event indicator main options vcv re dist.</pre>	ζ

			the example		
a m	odel				
merlin	<pre>(logb) (pro) (stime)</pre>	<pre>dEV[logb] E\ , family(rp,</pre>	<pre>sian) (3)) ma) , power(0)) [pro] df(3)</pre>	//////////////////////////////////////	log serum bilirubin covariate interaction random intercept random slope options distribution prothrombin index covariate random effect distribution response + covariate tde associations distribution event indicator main options
		nce(unstructu ibution(t) df			vcv re dist.

			the example			
a mo	del					
merlin	(logb t	ime time#trt time#M2[id] family(gaus	@1 ,		model 1	
) (pro r) (stime	cs(time, df(, family(ga		@1 /// /// /// ///	model 2	
	(201110	<pre>trt#fp(stim dEV[logb] E , family(rp</pre>	EV[pro]))) /// /// er)) ///	model 3 - tde distribut event ind	ion
) (stime)		EV[pro] eibull, ailure(canc	log) /// ///	model 4 - tde associati distribut event ind	ons ion
	covaria	nce(unstruct	(urea)			

predictions

predict cif1, cif marginal outcome(3) at(trt 0)
predict cif1, cif marginal outcome(4) at(trt 0)

	the example		

a user-defined model

```
real matrix gauss_logl(gml)
{
    y = merlin_util_depvar(gml) // dep. var.
    linpred = merlin_util_xzb(gml) // lin. pred.
    sdre = exp(merlin_util_ap(gml,1)) // anc. param.
    return(lnnormalden(y,linpred,sdre)) // logl
}
merlin (logb ... , family(user, llfunction(gauss_logl) nap(1)))
    ...
    ...
```

. . .

	the example		the future

a user-defined model

```
real matrix gauss_logl(gml)
{
    y = merlin_util_depvar(gml) // dep. var.
    linpred = merlin_util_xzb(gml) // lin. pred.
    sdre = exp(merlin_util_xzb_mod(gml,2)) // anc. param.
    return(lnnormalden(y,linpred,sdre)) // logl
}
merlin (logb ... , family(user, llfunction(gauss_logl)))
    (age M1[id]@1, family(null))
    ...
    ...
```

```
the example
  a user-defined nonlinear model - Yulia's talk
webuse orange, clear
menl circumf = (b1+U1[tree])/(1+exp(-(age-b2)/b3))
mata:
real matrix logl(transmorphic gml)
         = merlin_util_depvar(gml)
    V
    b1
         = merlin_util_xzb(gml)
         = merlin_util_xzb_mod(gml,2)
    b2
    b3
         = merlin_util_xzb_mod(gml,3)
    sdre = exp(merlin_util_ap(gml,1))
         = b1 :/ (1 :+ exp(-b2 :/ b3))
    xb
    return(lnnormalden(y,xb,sdre))
end
merlin (circumf M1[tree]@1, family(user, llf(logl) nap(1)))
       ( age@1
                           , family(null))
                           , family(null))
```

```
Michael J. Crowther merlin 12th September 2018
```

	the example		

stuff I didn't show

- random effects at arbitrary levels M4[centre>id]@1
- B-splines bs(time, df(3) order(4))
- d2EV[],?XB[]
- linterval(varname) interval censoring
- ltruncated(varname) left-truncation
- 9 (so far) other inbuilt families, e.g. beta, ologit
- bhazard(varname) relative survival
- mf(func_name) user-defined element function

			the family	
the fa	mily			

- merlin's syntax is not simple
- we can develop more user-friendly shell files to allow a simpler syntax for special cases
- merlin's minions...
 - excalibur (stmixed) for multilevel survival analysis (SJ under revision)
 - lancelot meta-analysis
 - arthur to be revealed next!
 - galahad maybe next year
 - ...

the motivation			the surprise	

Two useful features of merlin are:

- EV[depvar/#] element type
 - implemented for their use in joint longitudinal-survival models
- family(null)
 - implemented for use with user-defined models

their combination gives merlin some new capabilities

		the surprise	

any idea what this is?

the motivation			the surprise	

any idea what this is?

It's an artificial neural network!

		the surprise	

<u>Title</u>

```
neuralnet — fit an artificial neural network
```

<u>Syntax</u>

```
neuralnet [varlist] , options
```

where *varlist* defines any inputs to the network.

options

Description

<pre>output#(depvar, op_opts)</pre>	output model specification; see details
hlayers(#)	number of hidden layers in the network
hlink(link_list)	link functions for each hidden layer to the layer above
hnodes(<i>numlist</i>)	number of nodes per hidden layer
<pre>penalty(pen_func)</pre>	penalty function; lasso or ridge
lambda(#)	penalty parameter value; default 0.1
<u>nostand</u> ardise	do not standardise input variables to [0,1]
loss	minimise the loss function instead of maximising the log-likelihood
<u>show</u> merlin	displays the merlin command used in estimating the network
merlin_opts	options to pass to merlin

output options	Description
<u>f</u> amily(fam_spec)	distributional family for the output/response, see merlin families
<u>l</u> ink(type)	link function for the response model

Michael	L.I.	Crowther

		the surprise	

		the surprise	

	vation

e past

oal 1

example

the surprise

From my website - I'm now a data scientist!

Interests

- Survival Analysis
- Multilevel Models
- Joint Modelling
- Machine Learning
- Software Development

the future

- merlin can do a lot of things, hopefully in a usable way
- merlin is easily extended
- I continue to discover more and more things it can do
- arthur (neuralnet)
 - It's a rubbish implementation of neural networks
 - Needs analytic gradients to be useful
 - penalisation
 - But all capabilities of merlin can be used in a neural network, and vice versa
 - predict newvar, statistic ci

www.mjcrowther.co.uk/software/merlin

	the past	the goal	the example	the family	the surprise	the future
the pa	apers					
E	vtondod n	aultivariat	o gonoralico	d linear an	d non linos	-

- Extended multivariate generalised linear and non-linear mixed effects models. https://arxiv.org/abs/1710.02223
- merlin a unified framework for data analysis and methods development in Stata. https://arxiv.org/abs/1806.01615
- Multilevel mixed effects parametric survival analysis. https://arxiv.org/abs/1709.06633
- Deep learning neural networks and regression modelling: A general penalised likelihood framework for estimation, prediction and quantifying uncertainty. (In Prep.)

			the future

the reversal

I've just realised that Merlin is the better name...

The syllables start with M & L, which represents maximum likelihood and machine learning!

Jun 12

Ah man you've just added to the t-shirts I can have made 😌

⊘ 向

Jun 12 🗸