Up-to-date survival estimates from prognostic models using temporal recalibration

Sarah Booth¹ Mark J. Rutherford¹ Paul C. Lambert ¹,²

¹Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester, UK

²Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

12th September 2018

Nordic and Baltic Stata Users Group Meeting
Overview

- Prognostic models for cancer
- Flexible parametric survival models (stpm2)
- Period analysis (stset)
- Method of temporal recalibration
- Comparison of cohort, recalibrated and period analysis models
- Importance of updating prognostic models
PREDICT: Prognostic Model for Breast Cancer

These results are for women who have already had surgery. This graph shows the percentage of women surviving up to 15 years. These results are based on the inputs and treatments you selected.

Unlike the Cox model, parametric models specify the baseline hazard

The Weibull model requires linearity on the log cumulative hazard scale

\[\ln[H(t|x_i)] = \ln(\lambda) + \gamma \ln(t) + x_i \beta \]

Flexible parametric survival models use restricted cubic splines which allow more complex shapes to be captured
Restricted Cubic Splines

Sarah Booth: sb824@le.ac.uk

Producing up-to-date survival estimates from prognostic models
Restricted Cubic Splines
\[\ln[H(t|x_i)] = \gamma_0 + \gamma_1 z_1 i + \gamma_2 z_2 i + \gamma_3 z_3 i + \ldots + x_i \beta\]

- \(z_i\) = derived variables for the restricted cubic splines
- \(x_i \beta\) = linear predictor = prognostic index
- `stpm2` command in Stata
Cohort vs Period Analysis

Cohort Analysis

- All 4 participants would be included in cohort analysis
- Referred to as “complete analysis” by Brenner et al. (2009)

Period Analysis

- Creates more up-to-date survival estimates because people diagnosed many years ago only contribute to long-term survival estimates
- Reduces sample size
Cohort vs Period Analysis

Advantages of Period Analysis
- Creates more up-to-date survival estimates because people diagnosed many years ago only contribute to long-term survival estimates.

Disadvantages of Period Analysis
- Reduces sample size.

Table

<table>
<thead>
<tr>
<th>Participant</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 2 3 4 5 6 7 8 9 10 11</td>
</tr>
<tr>
<td>B</td>
<td>1 2 3 4 5 - - - - - - -</td>
</tr>
<tr>
<td>C</td>
<td>1 2 3 4 5 6 7 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>D</td>
<td>1 2 3 1 2 3</td>
</tr>
</tbody>
</table>

Sarah Booth: sb824@le.ac.uk

Producing up-to-date survival estimates from prognostic models
Advantages of Period Analysis

- Creates more up-to-date survival estimates because people diagnosed many years ago only contribute to long-term survival estimates.
Cohort vs Period Analysis

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advantages of Period Analysis

- Creates more up-to-date survival estimates because people diagnosed many years ago only contribute to long-term survival estimates

Disadvantages of Period Analysis

- Reduces sample size
Temporal Recalibration

<table>
<thead>
<tr>
<th>Participant</th>
<th>Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Method

- Fit a cohort model
- Use a period analysis sample to recalibrate the model
- The covariate effects are constrained to be the same
- The baseline hazard function is allowed to vary which can capture any improvements in survival
Colon cancer data from Surveillance, Epidemiology, and End Results Program (SEER) database

National Cancer Institute: Data collected from the United States

Variables used in this analysis are: age at diagnosis, sex, ethnicity

Survival times measured in months but for period analysis dates are required

Colon cancer data from Surveillance, Epidemiology, and End Results Program (SEER) database

National Cancer Institute: Data collected from the United States

Variables used in this analysis are: age at diagnosis, sex, ethnicity

Survival times measured in months but for period analysis dates are required

.m gen dx = mdy(mmdx,1,yydx)
.m format dx %td
.m gen exit = dx+survmm*30.5
.m format exit %td

- **mmdx**: month of diagnosis
- **yydx**: year of diagnosis
- **survmm**: survival time in months
- **dx**: date of diagnosis
- **exit**: date of death or censoring

Data Used for Each Model

<table>
<thead>
<tr>
<th>Type of Analysis</th>
<th>Dates of Diagnosis & Follow-Up</th>
<th>Follow-Up Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recalibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Cause-specific survival:** deaths due to colon cancer
- **Proportional hazards models:** for simplicity but also possible with time-dependent effects
- **Cohort:** 63,223 participants, 22,119 deaths
- **Period Analysis:** 39,743 participants, 4,889 deaths
- **Observed:** 6,300 participants, 2,474 deaths
. stset exit, origin(dx) fail(cancer==1) scale(365.24) ///
> exit(time min(dx+10*365.25, mdy(12,31,2005)))

 id: id
failure event: cancer == 1
obs. time interval: (exit[_n-1], exit]
exit on or before: time min(dx+10*365.25, mdy(12,31,2005))
t for analysis: (time-origin)/365.24
origin: time dx

124,579 total observations
61,356 observations begin on or after exit

63,223 observations remaining, representing
63,223 subjects
22,119 failures in single-failure-per-subject data
184,050.03 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 9.998905

exit: date of death or censoring
stset: Cohort

. stset exit, origin(dx) fail(cancer==1) scale(365.24) //
> exit(time min(dx+10*365.25,mdy(12,31,2005)))

id: id
failure event: cancer == 1
obs. time interval: (exit[_n-1], exit]
exit on or before: time min(dx+10*365.25,mdy(12,31,2005))
t for analysis: (time-origin)/365.24
origin: time dx

124,579 total observations
61,356 observations begin on or after exit

63,223 observations remaining, representing
63,223 subjects
22,119 failures in single-failure-per-subject data
184,050.03 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 9.998905

origin: when people become at risk, dx date of diagnosis
stset: Cohort

```
. stset exit, origin(dx) fail(cancer==1) scale(365.24) ///
  > exit(time min(dx+10*365.25, mdy(12,31,2005)))

    id:  id
failure event:  cancer == 1
obs. time interval:  (exit[_n-1], exit]
exit on or before:  time min(dx+10*365.25, mdy(12,31,2005))
t for analysis:  (time-origin)/365.24
origin:  time dx
```

124,579 total observations
61,356 observations begin on or after exit

63,223 observations remaining, representing
63,223 subjects
22,119 failures in single-failure-per-subject data
184,050.03 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 9.998905

scale(365.24): convert to survival time in years
stset: Cohort

```
. stset exit, origin(dx) fail(cancer==1) scale(365.24) ///
 > exit(time min(dx+10*365.25,mdy(12,31,2005)))
                    id: id
    failure event: cancer == 1
             obs. time interval: (exit[_n-1], exit]
              exit on or before: time min(dx+10*365.25,mdy(12,31,2005))
            t for analysis: (time-origin)/365.24
                origin: time dx

124,579  total observations
   61,356  observations begin on or after exit

   63,223  observations remaining, representing
   63,223  subjects
   22,119  failures in single-failure-per-subject data
184,050.03  total analysis time at risk and under observation

    at risk from t = 0
    earliest observed entry t = 0
    last observed exit t = 9.998905

fail: event indicator, cancer==1: death due to colon cancer
```
. stset exit, origin(dx) fail(cancer==1) scale(365.24) \/
> exit(time min(dx+10*365.25,mdy(12,31,2005)))

 id: id
failure event: cancer == 1
obs. time interval: (exit[_n-1], exit]
exit on or before: time min(dx+10*365.25,mdy(12,31,2005))
t for analysis: (time-origin)/365.24
origin: time dx

124,579 total observations
61,356 observations begin on or after exit

63,223 observations remaining, representing
63,223 subjects
22,119 failures in single-failure-per-subject data
184,050.03 total analysis time at risk and under observation

 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 9.998905

exit(): follow-up until end of 2005 or for a maximum of 10 years
Model: Cohort

```
stpm2 agercs* female black, scale(hazard) df(5) noorthog eform
Log likelihood = -73439.283 Number of obs = 63,223

| exp(b)     | Std. Err. |     z  | P>|z| | [95% Conf. Interval] |
|------------|-----------|--------|------|----------------------|
| xb         |           |        |      |                      |
| agercs1    | 1.012557  | 0.0025474 | 4.96 | 0.000 | 1.007577 1.017563  |
| agercs2    | 1.00005   | 7.46e-06 | 6.68 | 0.000 | 1.000035 1.000064 |
| agercs3    | .9999177  | 8.99e-06 | -9.15| 0.000 | .9999001 .9999353 |
| female     | .9098671  | 0.0125303 | -6.86 | 0.000 | .8856366 .9347606 |
| black      | 1.403117  | 0.0286116 | 16.61| 0.000 | 1.348145 1.46033  |
| _rcs1      | 12.69938  | 0.6035658 | 53.48| 0.000 | 11.56984 13.93919 |
| _rcs2      | 1.150777  | 0.0046616 | 34.67| 0.000 | 1.141677 1.15995  |
| _rcs3      | .8279092  | 0.0097947 | -15.96| 0.000 | .8089329 .8473307 |
| _rcs4      | 1.009746  | 0.0174485 | 0.56 | 0.575 | .9761203 1.04453  |
| _rcs5      | 1.113578  | 0.0115556 | 10.37| 0.000 | 1.091159 1.136459 |
| _cons      | 308.5041  | 53.719  | 32.92| 0.000 | 219.3025 433.9887 |
```

```
estimates store cohort
.range timevar10 0 10 1000
.predict cohort2006 if yydx==2006, timevar(timevar10) meansurv
```

agercs* female black: covariates in the model
Model: Cohort

```
. stpm2 agercs* female black, scale(hazard) df(5) noorthog eform
Log likelihood = -73439.283 Number of obs = 63,223

| exp(b) | Std. Err. | z  | P>|z| | [95% Conf. Interval] |
|--------|-----------|----|-----|---------------------|
| xb     |           |    |     |                     |
| agercs1| 1.012557  | .0025474 |  4.96 | 0.000 | 1.007577 - 1.017563 |
| agercs2| 1.00005   | 7.46e-06 |   6.68 | 0.000 | 1.000035 - 1.000064 |
| agercs3| .9999177  | 8.99e-06 |  -9.15 | 0.000 | .9999001 - .9999353 |
| female | .9098671  | .0125303 |  -6.86 | 0.000 | .8856366 - .9347606 |
| black  | 1.403117  | .0286116 |  16.61 | 0.000 | 1.348145 - 1.46033  |
| _rcs1  | 12.69938  | .6035658 |  53.48 | 0.000 | 11.56984 - 13.93919 |
| _rcs2  | 1.150777  | .0046616 |  34.67 | 0.000 | 1.141677 - 1.15995  |
| _rcs3  | .8279092  | .0097947 |  -15.96| 0.000 | .8089329 - .8473307 |
| _rcs4  | 1.009746  | .0174485 |   0.56 | 0.575 | .9761203 - 1.04453  |
| _rcs5  | 1.113578  | .0115556 |  10.37 | 0.000 | 1.091159 - 1.136459 |
| _cons  | 308.5041  | 53.719  |  32.92 | 0.000 | 219.3025 - 433.9887 |

. estimates store cohort
. range timevar10 0 10 1000
. predict cohort2006 if yydx==2006, timevar(timevar10) meansurv
```

scale(hazard): scale used e.g. hazards, odds
Model: Cohort

```
. stpm2 agercs* female black, scale(hazard) df(5) noorthog eform
Log likelihood = -73439.283 Number of obs = 63,223

|            | exp(b)     | Std. Err. | z    | P>|z|  | [95% Conf. Interval] |
|------------|------------|-----------|------|------|---------------------|
| xb         |            |           |      |      |                     |
| ager cs1   | 1.012557   | .0025474  | 4.96 | 0.000| 1.007577 1.017563   |
| ager cs2   | 1.00005    | 7.46e-06  | 6.68 | 0.000| 1.000035 1.000064   |
| ager cs3   | .9999177   | 8.99e-06  | -9.15| 0.000| .9999001 .9999353   |
| female     | .9098671   | .0125303  | -6.86| 0.000| .8856366 .9347606   |
| black      | 1.403117   | .0286116  | 16.61| 0.000| 1.348145 1.46033    |
| _rcs1      | 12.69938   | .6035658  | 53.48| 0.000| 11.56984 13.93919   |
| _rcs2      | 1.150777   | .0046616  | 34.67| 0.000| 1.141677 1.15995    |
| _rcs3      | .8279092   | .0097947  | -15.96| 0.000| .8089329 .8473307   |
| _rcs4      | 1.009746   | .0174485  | 0.56 | 0.575| .9761203 1.04453    |
| _rcs5      | 1.113578   | .0115556  | 10.37| 0.000| 1.091159 1.136459   |
| _cons      | 308.5041   | 53.719    | 5.78 | 0.000| 219.3025 433.9887   |
```

. estimates store cohort
. range timevar10 0 10 1000
. predict cohort2006 if yydx==2006, timevar(timevar10) meansurv

df(5): degrees of freedom for modelling the baseline
Model: Cohort

```
stpm2 agercs* female black, scale(hazard) df(5) noorthog eform
```

Log likelihood = -73439.283 Number of obs = 63,223

| | exp(b) | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|------------|-----------|-------|------|----------------------|
| xb | | | | | |
| agercs1| 1.012557 | 0.0025474 | 4.96 | 0.000| 1.007577 to 1.017563 |
| agercs2| 1.00005 | 7.46e-06 | 6.68 | 0.000| 1.000035 to 1.000064 |
| agercs3| 0.9999177 | 8.99e-06 | -9.15 | 0.000| 0.9999001 to 0.9999353 |
| female | 0.9098671 | 0.0125303 | -6.86 | 0.000| 0.8856366 to 0.9347606 |
| black | 1.403117 | 0.0286116 | 16.61 | 0.000| 1.348145 to 1.46033 |
| _rcs1 | 12.69938 | 0.6035658 | 53.48 | 0.000| 11.56984 to 13.93919 |
| _rcs2 | 1.150777 | 0.0046616 | 34.67 | 0.000| 1.141677 to 1.15995 |
| _rcs3 | 0.8279092 | 0.0097947 | -15.96| 0.000| 0.8089329 to 0.8473307 |
| _rcs4 | 1.009746 | 0.0174485 | 0.56 | 0.575| 0.9761203 to 1.04453 |
| _rcs5 | 1.113578 | 0.0115556 | 10.37| 0.000| 1.091159 to 1.136459 |
| _cons | 308.5041 | 53.719 | 32.92 | 0.000| 219.3025 to 433.9887 |

```
estimates store cohort
.range timevar10 0 10 1000
.predict cohort2006 if yydx==2006, timevar(timevar10) meansurv
```

noorthog: splines are not orthogonalised (simplifies recalibration)
Model: Cohort

```
.stpm2 agercs* female black, scale(hazard) df(5) noorthog eform
Log likelihood = -73439.283 Number of obs = 63,223

| exp(b)       | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|--------------|-----------|------|------|----------------------|
| xb           |           |      |      |                      |
| agercs1      | 1.012557  | 0.0025474 | 4.96 | 0.000 | 1.007577 1.017563 |
| agercs2      | 1.00005  | 7.46e-06 | 6.68 | 0.000 | 1.000035 1.000064|
| agercs3      | 0.9999177 | 8.99e-06 | -9.15| 0.000 | 0.9999001 0.9999353|
| female       | 0.9098671 | 0.0125303| -6.86| 0.000 | 0.8856366 0.9347606|
| black        | 1.403117  | 0.0286116 | 16.61| 0.000 | 1.348145 1.46033 |
| _rcs1        | 12.69938  | 0.6035658 | 53.48| 0.000 | 11.56984 13.93919|
| _rcs2        | 1.150777  | 0.0046616 | 34.67| 0.000 | 1.141677 1.15995 |
| _rcs3        | 0.8279092 | 0.0097947 | -15.96| 0.000 | 0.8089329 0.8473307|
| _rcs4        | 1.009746  | 0.0174485 | 0.56 | 0.575 | 0.9761203 1.04453 |
| _rcs5        | 1.113578  | 0.0115556 | 10.37| 0.000 | 1.091159 1.136459|
| _cons        | 308.5041  | 53.719 | 32.92| 0.000 | 219.3025 433.9887|
```

```
.estimates store cohort
.range timevar10 0 10 1000
.predict cohort2006 if yydx==2006, timevar(timevar10) meansurv

* eform: display the hazard ratios instead of log hazard ratios
```
Model: Cohort

```
. stpm2 agercs* female black, scale(hazard) df(5) noorthog eform
Log likelihood = -73439.283 Number of obs = 63,223

|                | exp(b)   | Std. Err. |    z  | P>|z|  | [95% Conf. Interval] |
|----------------|----------|-----------|-------|------|----------------------|
| xb             |          |           |       |      |                      |
| agercs1        | 1.012557 | .0025474  | 4.96  | 0.000| 1.007577  1.017563   |
| agercs2        | 1.00005  | 7.46e-06  | 6.68  | 0.000| 1.000035  1.000064   |
| agercs3        | .9999177 | 8.99e-06  | -9.15 | 0.000| .9999001  .9999353   |
| female         | .9098671 | .0125303  | -6.86 | 0.000| .8856366  .9347606   |
| black          | 1.403117 | .0286116  | 16.61 | 0.000| .348145   1.46033    |
| _rcs1          | 12.69938 | .6035658  | 53.48 | 0.000| 11.56984  13.93919   |
| _rcs2          | 1.150777 | .0046616  | 34.67 | 0.000| 1.141677  1.15995    |
| _rcs3          | .8279092 | .0097947  | -15.96| 0.000| .8089329  .8473307   |
| _rcs4          | 1.009746 | .0174485  | 0.56  | 0.575| .9761203  1.04453    |
| _rcs5          | 1.113578 | .0115556  | 10.37 | 0.000| 1.091159  1.136459   |
| _cons          | 308.5041 | 53.719    | 32.92 | 0.000| 219.3025  433.9887   |
```

. estimates store cohort
. range timevar10 0 10 1000
. predict cohort2006 if yydx==2006, timevar(timevar10) meansurv
Model: Cohort

```
.stpm2 agercs* female black, scale(hazard) df(5) noorthog eform
Log likelihood = -73439.283  Number of obs = 63,223

|                | exp(b)  | Std. Err. |    z |  P>|z| |      [95% Conf. Interval]     |
|----------------|---------|-----------|------|--------|-----------------------------|
| xb             |         |           |      |        |                             |
| agercs1        | 1.012557| .0025474  | 4.96 | 0.000  | 1.007577 1.017563           |
| agercs2        | 1.00005 | 7.46e-06  | 6.68 | 0.000  | 1.000035 1.000064           |
| agercs3        | .9999177| 8.99e-06  | -9.15| 0.000  | .9999001 .9999353           |
| female         | .9098671| .0125303  | -6.86| 0.000  | .8856366 .9347606           |
| black          | 1.403117| .0286116  | 16.61| 0.000  | .348145 1.46033             |
| _rcs1          | 12.69938| .6035658  | 53.48| 0.000  | 11.56984 13.93919           |
| _rcs2          | 1.150777| .0046616  | 34.67| 0.000  | 1.141677 1.15995            |
| _rcs3          | .8279092| .0097947  | -15.96| 0.000 | .8089329 .8473307          |
| _rcs4          | 1.009746| .0174485  | 0.56 | 0.575  | .9761203 1.04453            |
| _rcs5          | 1.113578| .0115556  | 10.37| 0.000  | 1.091159 1.136459           |
| _cons          | 308.5041| 53.719    | 32.92| 0.000  | 219.3025 433.9887           |

.estimates store cohort
.student timevar10 0 10 1000
.predict cohort2006 if yydx==2006, timevar(timevar10) meansurv
```
Model: Cohort

```
. stpm2 agercs* female black, scale(hazard) df(5) noorthog eform

Log likelihood = -73439.283  Number of obs = 63,223

|              | exp(b)      | Std. Err. | z     | P>|z| | [95% Conf. Interval] |
|--------------|-------------|-----------|-------|------|---------------------|
| xb           |             |           |       |      |                     |
| agercs1      | 1.012557    | 0.0025474 | 4.96  | 0.000| 1.007577            | 1.017563 |
| agercs2      | 1.00005     | 7.46e-06  | 6.68  | 0.000| 1.000035            | 1.000064 |
| agercs3      | .9999177    | 8.99e-06  | -9.15 | 0.000| .9999001            | .9999353 |
| female       | .9098671    | 0.0125303 | -6.86 | 0.000| .8856366            | .9347606 |
| black        | 1.403117    | 0.0286116 | 16.61 | 0.000| 1.348145            | 1.46033  |
| _rcs1        | 12.69938    | 0.6035658 | 53.48 | 0.000| 11.56984            | 13.93919 |
| _rcs2        | 1.150777    | 0.0046616 | 34.67 | 0.000| 1.141677            | 1.15995  |
| _rcs3        | .8279092    | 0.0097947 | -15.96| 0.000| .8089329            | .8473307 |
| _rcs4        | 1.009746    | 0.0174485 | 0.56  | 0.575| .9761203            | 1.04453  |
| _rcs5        | 1.113578    | 0.0115556 | 10.37 | 0.000| 1.091159            | 1.136459 |
| _cons        | 308.5041    | 53.719    | 32.92 | 0.000| 219.3025            | 433.9887 |
```

```
. estimates store cohort
. range timevar10 0 10 1000
. predict cohort2006 if yydx==2006, timevar(timevar10) meansurv
```
. stset exit, origin(dx) fail(cancer==1) scale(365.24) ///
> entry(time mdy(1,1,2004)) exit(time min(dx+10*365.25,mdy(12,31,2005)))

 id: id
 failure event: cancer == 1
obs. time interval: (exit[_n-1], exit]
enter on or after: time mdy(1,1,2004)
exit on or before: time min(dx+10*365.25,mdy(12,31,2005))
t for analysis: (time-origin)/365.24
 origin: time dx

124,579 total observations
 23,480 observations end on or before enter()
 61,356 observations begin on or after exit

 39,743 observations remaining, representing
 39,743 subjects
 4,889 failures in single-failure-per-subject data
 59,904.493 total analysis time at risk and under observation
 at risk from t = 0
 earliest observed entry t = 0
 last observed exit t = 9.998905
. estimates restore cohort
(results cohort are active now)
. local agercs1 = _b[agercs1]
. local agercs2 = _b[agercs2]
. local agercs3 = _b[agercs3]
. local female = _b[female]
. local black = _b[black]
. constraint 1 _b[agercs1] = `agercs1´
. constraint 2 _b[agercs2] = `agercs2´
. constraint 3 _b[agercs3] = `agercs3´
. constraint 4 _b[female] = `female´
. constraint 5 _b[black] = `black´
. local knots = e(bhknots)
. local bknots = e(boundary_knots)
. estimates restore cohort
(results cohort are active now)
. local agercs1 = _b[agercs1]
. local agercs2 = _b[agercs2]
. local agercs3 = _b[agercs3]
. local female = _b[female]
. local black = _b[black]
. constraint 1 _b[agercs1] = `agercs1´
. constraint 2 _b[agercs2] = `agercs2´
. constraint 3 _b[agercs3] = `agercs3´
. constraint 4 _b[female] = `female´
. constraint 5 _b[black] = `black´
. local knots = e(bhknots)
. local bknots = e(boundary_knots)
. estimates restore cohort
(results cohort are active now)
. local agercs1 = _b[agercs1]
. local agercs2 = _b[agercs2]
. local agercs3 = _b[agercs3]
. local female = _b[female]
. local black = _b[black]
. constraint 1 _b[agercs1] = `agercs1´
. constraint 2 _b[agercs2] = `agercs2´
. constraint 3 _b[agercs3] = `agercs3´
. constraint 4 _b[female] = `female´
. constraint 5 _b[black] = `black´
. local knots = e(bhknobs)
. local bknots = e(boundary_knots)
. stpm2 agercs* female black, scale(hazard) noorthog constraints(1 2 3 4 5) ///
> bknotted(`bknotted`) knots(`knots`) eform
note: delayed entry models are being fitted

Log likelihood = -16015.094 Number of obs = 39,743

| | exp(b) | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------------------|-----------|-----------|-----|-------|----------------------|
| xb | | | | | |
| agercs1 | 1.012557 | (constrained) |
| agercs2 | 1.00005 | (constrained) |
| agercs3 | .9999177 | (constrained) |
| female | .9098671 | (constrained) |
| black | 1.403117 | (constrained) |
| _rcs1 | 23.11036 | 2.852501 | 25.44 | 0.000 | 18.14443 29.43541 |
| _rcs2 | 1.201228 | .0117535 | 18.74 | 0.000 | 1.178411 1.224486 |
| _rcs3 | .7933542 | .0212882 | -8.63 | 0.000 | .7527083 .8361949 |
| _rcs4 | .9970216 | .0372468 | -0.08 | 0.936 | .9266278 1.072763 |
| _rcs5 | 1.144055 | .02421 | 6.36 | 0.000 | 1.097575 1.192504 |
| _cons | 2544.921 | 1128.816 | 17.68 | 0.000 | 1066.887 6070.581 |

. predict recalibration2006 if yydx==2006, timevar(timevar10) meansurv
Model: Temporal Recalibration

```
. stpm2 agercs* female black, scale(hazard) noorthog constraints(1 2 3 4 5) ///
   > bknots(`bknots´) knots(`knots´) eform
note: delayed entry models are being fitted
Log likelihood = -16015.094 Number of obs = 39,743

|           | exp(b) | Std. Err. | z     | P>|z| | [95% Conf. Interval] |
|-----------|--------|-----------|-------|------|----------------------|
| xb        |        |           |       |      |                      |
| agercs1   | 1.012557 | (constrained) |     |      |                      |
| agercs2   | 1.00005  | (constrained) |     |      |                      |
| agercs3   | .9999177 | (constrained) |     |      |                      |
| female    | .9098671 | (constrained) |     |      |                      |
| black     | 1.403117 | (constrained) |     |      |                      |
| _rcs1     | 23.11036  | 2.852501 | 25.44 | 0.000 | 18.14443 29.43541 |
| _rcs2     | 1.201228  | .0117535 | 18.74 | 0.000 | 1.178411 1.224486 |
| _rcs3     | .7933542  | .0212882 | -8.63 | 0.000 | .7527083 .8361949 |
| _rcs4     | .9970216  | .0372468 | -0.08 | 0.936 | .9266278 1.072763 |
| _rcs5     | 1.144055  | .02421   | 6.36  | 0.000 | 1.097575 1.192504 |
| _cons     | 2544.921  | 1128.816 | 17.68 | 0.000 | 1066.887 6070.581 |
```

. predict recalibration2006 if yydx==2006, timevar(timevar10) meansurv

Sarah Booth: sb824@le.ac.uk
Producing up-to-date survival estimates from prognostic models
Model: Temporal Recalibration

```
id: stpm2 agercs* female black, scale(hazard) noorthog constraints(1 2 3 4 5) ///
> bknobs(`bknobs`) knots(`knots`) eform
note: delayed entry models are being fitted
Log likelihood = -16015.094 Number of obs = 39,743

|          | exp(b)  | Std. Err. | z    | P>|z|  | [95% Conf. Interval] |
|----------|---------|-----------|------|------|---------------------|
| xb       |         |           |      |      |                     |
| agercs1  | 1.012557| (constrained) |
| agercs2  | 1.00005 | (constrained) |
| agercs3  | .9999177| (constrained) |
| female   | .9098671| (constrained) |
| black    | 1.403117| (constrained) |
| _rcs1    | 23.11036| 2.852501  | 25.44| 0.000| 18.14443 29.43541 |
| _rcs2    | 1.201228| .0117535  | 18.74| 0.000| 1.178411 1.224486 |
| _rcs3    | .7933542| .0212882  | -8.63| 0.000| .7527083 .8361949 |
| _rcs4    | .9970216| .0372468  | -0.08| 0.936| .9266278 1.072763 |
| _rcs5    | 1.144055| .02421    | 6.36 | 0.000| 1.097575 1.192504 |
| _cons    | 2544.921| 1128.816  | 17.68| 0.000| 1066.887 6070.581 |

.predict recalibration2006 if yydx==2006, timevar(timevar10) meansurv
```

Sarah Booth: sb824@le.ac.uk
Producing up-to-date survival estimates from prognostic models
Model: Period Analysis

```
.stpm2 agercs* female black, scale(hazard) df(5) eform
note: delayed entry models are being fitted
Log likelihood = -16080.35 Number of obs = 39,743
exp(b) Std. Err. z P>|z| [95% Conf. Interval]
xb
 agercs1 1.004674 .0051795 0.90 0.366 .9945736 1.014877
 agercs2 1.000028 .0000157 1.80 0.072 .9999974 1.000059
 agercs3 .9999383 .000019 -3.24 0.001 .999901 .9999756
 female .9084784 .0266046 -3.28 0.001 .8578025 .962148
 black 1.441617 .0606779 8.69 0.000 1.327464 1.565587
 _rcs1 2.014562 .0187427 75.28 0.000 1.97816 2.051634
 _rcs2 1.124344 .0079382 16.60 0.000 1.108892 1.14001
 _rcs3 .9535394 .0044961 -10.09 0.000 .9447678 .9623925
 _rcs4 1.069052 .003847 18.56 0.000 1.061538 1.076618
 _rcs5 1.008206 .0025619 3.22 0.001 1.003198 1.01324
 _cons .3234849 .0094079 -38.81 0.000 .3055615 .3424596

.predict period2006 if yydx==2006, timevar(timevar10) meansurv
```
10 Year Marginal Survival

Proportion Alive vs. Years since Diagnosis

- Observed

Sarah Booth: sb824@le.ac.uk
Producing up-to-date survival estimates from prognostic models
10 Year Marginal Survival

Proportion Alive vs Years since Diagnosis

- Observed
- Cohort

Sarah Booth: sb824@le.ac.uk

Producing up-to-date survival estimates from prognostic models
10 Year Marginal Survival

Proportion Alive vs Years since Diagnosis for Observed, Cohort, and Recalibrated data.
Calibration of Models

\[
\text{. predict prognosticindex, xbnobaseline}
\]

\[
\text{. xtile calibrationgroup = prognosticindex, n(10)}
\]

Calibration Plot

![Calibration Plot](image_url)
. predict prognosticindex, xbnobaseline
. xtile calibrationgroup = prognosticindex, n(10)
. predict prognosticindex, xbnobaseline
. xtile calibrationgroup = prognosticindex, n(10)
Risk Groups

Group 5

Group 2

Cohort Recalibrated Period Observed
Use of New Data

Keep the original model from 1986-1995
Recalibrate using a period window for the 2 most recent years
Continue until recalibrating with a period window of 2004-2005
Use of New Data

- Refit the model each year using the most recent 10 years of data
- Recalibrate using a period window for the 2 most recent years
 - Continue until recalibrating with a period window of 2004-2005
10 Year Marginal Survival Predictions

- Observed: Diagnosed in 2006
- Original Cohort: 1986-1995

Proportion Alive vs. Years since Diagnosis

Sarah Booth: sb824@le.ac.uk
Producing up-to-date survival estimates from prognostic models
10 Year Marginal Survival Predictions

- **Proportion Alive**
- **Years since Diagnosis**
- **Observed: Diagnosed in 2006**
- **Original Cohort: 1986-1995**
- **Cohort All Data: 1986-2005**

Sarah Booth: sb824@le.ac.uk
Producing up-to-date survival estimates from prognostic models
10 Year Marginal Survival Predictions

- Observed: Diagnosed in 2006
- Original Cohort: 1986-1995
- Cohort All Data: 1986-2005
- New Cohort: 1996-2005
10 Year Marginal Survival Predictions

- Observed: Diagnosed in 2006
- Original Cohort: 1986-1995
- Cohort All Data: 1986-2005
- New Cohort: 1996-2005
- New Cohort Recalibrated

Proportion Alive vs. Years since Diagnosis

- Sarah Booth: sb824@le.ac.uk
- Producing up-to-date survival estimates from prognostic models
10 Year Marginal Survival Predictions

- Observed: Diagnosed in 2006
- Original Cohort: 1986-1995
- Cohort All Data: 1986-2005
- New Cohort: 1996-2005
- New Cohort Recalibrated
- Original Cohort Recalibrated

Proportion Alive vs Years since Diagnosis for different cohorts.
Cohort models often underestimate survival.

Period analysis uses a subset of data to create more up-to-date survival predictions.

Very similar predictions are produced using temporal recalibration but all the data is used.

Simple to fit these types of models in Stata using stset to define the sample, stpm2 and constraints to fit the models.

Importance of regularly updating models when new data becomes available.

These methods can also be used for non-proportional hazard models.

Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model, *Stata Press*.

Brenner, H. & Gefeller, O (1996)