Exploring Marginal Treatment Effects Flexible estimation using Stata

Martin Eckhoff Andresen

Statistics Norway

Oslo, September 12th 2018

Motivation

- Instrumental variables (IV) estimators solve endogeneity problems
- When there is **heterogenous returns**, IV estimate LATE:
 - Average treatment effect among compliers
 - Not always of interest!
- Marginal Treatment Effects allows you to
 - Go beyond LATE in settings with essential heterogeneity
 - Capture the full distribution of treatment effects
 - Allow us to back out commonly used treatment effect parameters
 - Unify IV methods, selection models and control function approaches

This paper

- Presents the theory of Marginal Treatment Effects aimed at the applied empiricist
- Highlights similarities to selection models and control function approaches
- Introduces the new Stata package mtefe for estimating MTEs
- Performs Monte Carlo **simulations** to investigate the robustness of the estimators

A motivating example: College and wages

$$D = a+bX + cZ + \overbrace{dability + eZ \times ability + \mu}^{unobserved}$$

$$w = f+gX + hD + \overbrace{iability + jD \times ability + \epsilon}^{unobserved}$$

• If
$$d \neq 0 \neq i$$
: Selection problem

- If j = 0: IV recovers the ATE with a valid instrument Z
- If $j \neq 0$: IV recovers a local average treatment effect
- Relative size of LATE vs. ATE depends on
 - what individuals are shifted into treatment by the instrument e
 - what individuals have higher or lower treatment effects j

A generalized Roy model

$$\begin{array}{ll} Y_{j} = \mu_{j}(X) + U_{j} & \text{for } j = 0, 1 & (1) \\ Y = DY_{1} + (1 - D)Y_{0} & (2) \\ D = \mathbbm{1} [Z\gamma > V] & \text{where } Z = X, Z_{-} & (3) \end{array}$$

- Without loss of generality normalize the scale of V
 - $D = 1 \Leftrightarrow \gamma Z > V \Leftrightarrow F_V(Z\gamma) > F_V(V) \Leftrightarrow P(Z) > U_D$
 - $U_D \sim U(0,1)$: Percentiles of the **unobserved resistance**
- Treatment effect: $\beta = Y_1 Y_0 = \mu_1(X) \mu_0(X) + U_1 U_0$
- With essential heterogeneity: Sorting on unobserved gains
 - $\operatorname{cov}(\beta, D \mid X) \neq 0$
 - Treatment decision made with knowledge of unobserved gains

Marginal Treatment Effects

$$\begin{aligned} \mathsf{MTE}(x, u) &\equiv \mathbb{E}(Y_1 - Y_0 | U_d = u, X = x) \\ &= \mu_1(x) - \mu_0(x) + \mathbb{E}(U_1 - U_0 \mid U_D = u) \end{aligned}$$

Average β for people with a **particular distaste for treatment** and x

Björklund and Moffitt (1987), Heckman and coauthors (1997; 1999; 2005; 2007), Cornelissen et al. (2016); Brinch et al. (2015).

LATE vs MTE

With two particular values of an instrument, z and z', the Wald estimator is

$$\mathsf{LATE}(x) = \frac{\mathbb{E}(Y|X = x, Z_{-} = z') - \mathbb{E}(Y|X = x, Z_{-} = z)}{\mathbb{E}(D|X = x, Z_{-} = z') - \mathbb{E}(D|X = x, Z_{-} = z)}$$

This is a Local Average Treatment Effect

- People who choose treatment when $Z_{-} = z'$, but not when $Z_{-} = z$
- In the choice model: People with $P(x, z') < U_D \le P(x, z)$:

 $\begin{aligned} \mathsf{LATE}(x, z, z') &= \mu_1(x) - \mu_0(x) + \mathbb{E}(U_1 - U_0 | P(x, z') < U_D \le P(x, z)) \\ \mathsf{MTE}(x, u) &= \mu_1(x) - \mu_0(x) + \mathbb{E}(U_1 - U_0 | U_D = u) \end{aligned}$

MTE is a limit form of LATE (Heckman, 1997)

Back to the motivating example

$$D = a + bX + cZ + dability + eZ \times ability + \mu$$
$$w = f + gX + hD + \underbrace{iability + jD \times ability + \epsilon}_{\text{unobserved}}$$

In the choice model, every omitted variable will enter $U_{0,}U_{1}, U_{D}$.

- High-ability people will have lower U_D if d > 0
- ...and higher unobserved treatment effects $(U_1 U_0)$ if j > 0
- Should lead to a downward sloping MTE $cov(U_1 U_0, U_D) < 0$

This selection pattern is precisely what MTE estimates

An example MTE curve

Standard IV assumptions

Interpreting IV as LATE (Imbens and Angrist, 1994) requires:

Exclusion $Y_j \perp Z_- | X$. The instrument affect outcomes only through the probability of treatment | X

Relevance $P(z) \neq P(z')$. Treatment is a nontrivial function of the instrument

Monotonicity $P(z) \ge P(z') \forall i$ two values of the instrument cannot shift some people in and others out

- Monotonicity should hold between all possible pairs z, z'
- These assumptions imply and are implied by the model in Eq. 1-3 (Vytlacil, 2002)

The separability assumption

Best case scenario: Estimate MTEs with no more assumptions than IV

- Estimate MTE within each cell of X, aggregate
- In practice: Limited data and support. Instead assume

Separability $\mathbb{E}(U_j \mid X, U_D) = \mathbb{E}(U_j \mid U_D)$

Implied by, but weaker than, full independence

- All X do is shift the MTE curve up or down
- Same assumption as in selection models

Usually also work with linear version of $\mu_j(x) = x\beta_j$

Estimation methods

- First estimate the propensity scores P(Z)
- Local Instrumental Variables
 - The derivative of the conditional expectation of Y wrt. p

•
$$\mathsf{MTE}(x, u) = \frac{\partial \mathbb{E}(Y|x, p)}{\partial p} \mid_{u=p}$$

- Separate approach
 - Estimate outcome given x, p separately controlling selection
 - $MTE(x, u) = \mathbb{E}(Y_1 \mid x, U_D = u) E(Y_0 \mid x, U_D = u)$
 - Control selection via control function similar to selection models
- Maximum likelihood (joint normal model only)

Functional forms

- (U_0, U_1, V) joint normal: Heckman selection
- $\mathbb{E}(U_j \mid U_D = u) = \sum_{1}^{K} \pi_k(u^k \frac{1}{k+1})$: polynomial model
- Polynomial model with splines
- Semiparametric model
 - Estimate partial linear model of $\mathbb{E}(Y \mid X, p) = X\beta_0 + X(\beta_1 - \beta_0)p + K(p)$
 - Using double residual regression (Robinson, 1988)

The mtefe package

- Acceps fixed effects in all independent varlists
- Supports weights (pweights, fweights)
- Supports Local IV, separate approach and maximum likelihood estimation
- More flexible MTE models, including spline functions
- Calculates treatment effect parameters from results
- Analytic standard errors and bootstrap including first stage
- Improved graphical output (mtefeplot)

Brave and Walstrum (2014)

The mtefe command

mtefe depvar [indepvars] (depvar_t = varlist_{iv}) [if] [in] [weight] [,
polynomial(#) splines(numlist) semiparametric restricted(varlist_r)
separate mlikelihood link(string) + other options]

- Follows Stata's IV syntax
- Accepts fixed effects (i.varname)
- Several options follow similar options in margte

Example output I

. mtefe_gendata, obs(10000) districts(10)

```
. mtefe lwage exp exp2 i.district (col=distCol)
Parametric normal MTE model
Treatment model: Probit
Estimation method: Local IV
```

Observations : 10000

	lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
beta0							
	exp	.0358398	.0064408	5.56	0.000	.0232145	.0484651
	exp2	0008453	.0002019	-4.19	0.000	0012411	0004496
dis	strict						
	2	.2352456	.0680412	3.46	0.001	.1018712	.36862
	3	.6294914	.0701091	8.98	0.000	.4920634	.7669194
	4	.0131179	.0597721	0.22	0.826	1040474	.1302832
	5	.0338606	.0705835	0.48	0.631	1044974	.1722186
	6	.1699366	.0605086	2.81	0.005	.0513275	.2885458
	7	1899241	.060115	-3.16	0.002	3077617	0720865
	8	1842254	.0676843	-2.72	0.007	3169003	0515504
	9	7908301	.0578436	-13.67	0.000	9042153	677445
	10	4432749	.0597237	-7.42	0.000	5603455	3262044
	_cons	3.164706	.0650331	48.66	0.000	3.037228	3.292184
beta1-b	oeta0						

Example output II

exp	0386384	.010241	-3.77	0.000	0587128	018564				
exp2	.0012967	.0003288	3.94	0.000	.0006523	.0019412				
district	265112	107020	0 40	0 012	0550020	4740201				
<u> </u>	.205112	.107039	2.40	0.015	.0552959	.4749301				
(outpu	t omitted)									
10	.3143661	.1072555	2.93	0.003	.1041237	.5246085				
_cons	.4255863	.0983572	4.33	0.000	.2327863	.6183863				
k										
mills	4790282	.0611081	-7.84	0.000	5988124	359244				
effects										
ate	.3283373	.0242932	13.52	0.000	.2807177	.3759568				
att	.5369432	.0388809	13.81	0.000	.4607287	.6131576				
atut	.1195067	.0384691	3.11	0.002	.0440995	.194914				
late	.3279726	.0245142	13.38	0.000	.2799198	.3760254				
mprte1	.3463148	.0256971	13.48	0.000	.2959433	.3966862				
mprte2	.3309428	.024298	13.62	0.000	.2833137	.3785719				
mprte3	016257	.0498984	-0.33	0.745	1140679	.0815538				
Test of observable beterogeneity n-value 0.00										
Tost of opportial hotorogonaity, p value										
Test of essential meterogeneity, p-value 0.0000										

Note: Analytical standard errors ignore the facts that the propensity score, (output omitted)

Marginal Treatment Effects of college

Interpreting heterogeneity

• The unobserved dimension

- Depends on what is observed!
- Positive selection on unobserved gains: MTE is downward sloping
 - In line with predictions from a simple Roy model
 - Consistent with treatment decisions made with **knowledge of unobserved gains**
- The observed dimension
 - Positive selection if $\gamma \times (\beta_1 \beta_0) > 0$
 - X that leads to more treatment also leads to higher treatment effects
 - Negative selection if $\gamma \times (\beta_1 \beta_0) < 0$

MTEs unify treatment effect parameters

Using MTE(x, u), we can calculate any treatment effect parameter as

$$\int_0^1 \omega(u) \mathsf{MTE}(\bar{x}, u) du = \bar{x}(\beta_1 - \beta_0) + \int_0^1 \omega(u) k(u) du$$

- $\omega(u)$ is the density of U_D in the population of interest
- \bar{x} is the average x in the population of interest

Where the population of interest depends on the parameter:

- ATE: Everyone, $\omega(u) = 1$, \bar{x} is average x
- ATT: Population has $D = 1 \Leftrightarrow U_D \leq p$, \bar{x} is average among treated
- ATUT: Population has $D = 0 \Leftrightarrow U_D > p$, \bar{x} is average among untreated
- LATE/IV: Population is compliers
- PRTE/MPRTE: Population is people shifted by policy

Local Average Treatment Effects

Practical advice for users

- Interpret the unobserved dimension in light of observables
- Know your setting, argue explicitly for what U_D could pick up
- Use this to defend the separability assumption
- Use semiparametric methods to guide your choice of functional form
- Show robustness to
 - Choice of functional form
 - Use of estimation method

Conclusion

- Marginal treatment effects should be in your toolbox
- Heterogeneous returns is the more reasonable baseline case
- MTE analysis estimate the full **distribution of treatment effects** and thus go beyond LATE
 - But usually at the cost of stricter assumptions
 - Unless you have an instrument that work without covariates and generate full support
- ...but MTE aren't all that new closely related to selection models.
- The mtefe package does the work for you (please report bugs)

References I

- Björklund, A. and R. Moffitt (1987): "The Estimation of Wage Gains and Welfare Gains in Self-selection," *The Review of Economics and Statistics*, 69, 42–49.
- Brave, S. and T. Walstrum (2014): "Estimating marginal treatment effects using parametric and semiparametric methods," *Stata Journal*, 14, 191–217(27).
- Brinch, C., M. Mogstad, and M. Wiswall (2015): "Beyond LATE with a discrete instrument," Forthcoming in Journal of Political Economy.
- Cornelissen, T., C. Dustmann, A. Raute, and U. Schönberg (2016): "From LATE to MTE: Alternative methods for the evaluation of policy interventions," *Labour Economics*, 41, 47 – 60, sOLE/EALE conference issue 2015.
- Heckman, J. (1997): "Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations," *Journal of Human Resources*, 32, 441–462.
- Heckman, J. J. and E. J. Vytlacil (1999): "Local instrumental variables and latent variable models for identifying and bounding treatment effects," *Proceedings of the National Academy of Sciences of the United States of America*, 96(8), 4730–4734.

—— (2005): "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," *Econometrica*, 73, 669–738.

References II

- (2007): "Chapter 71 Econometric Evaluation of Social Programs, Part II: Using the Marginal Treatment Effect to Organize Alternative Econometric Estimators to Evaluate Social Programs, and to Forecast their Effects in New Environments," Elsevier, vol. 6, Part B of Handbook of Econometrics, 4875 – 5143.
- Imbens, G. W. and J. D. Angrist (1994): "Identification and Estimation of Local Average Treatment Effects," *Econometrica*, 62, pp. 467–475.
- Robinson, P. (1988): "Root- N-Consistent Semiparametric Regression," *Econometrica*, 56, 931–54.
- Vytlacil, E. (2002): "Independence, Monotonicity, and Latent Index Models: An Equivalence Result," *Econometrica*, 70, 331–341.