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Introduction

Motivation

Instrumental variables (IV) estimators solve endogeneity problems
When there is heterogenous returns, IV estimate LATE:

Average treatment effect among compliers
Not always of interest!

Marginal Treatment Effects allows you to
Go beyond LATE in settings with essential heterogeneity
Capture the full distribution of treatment effects
Allow us to back out commonly used treatment effect parameters
Unify IV methods, selection models and control function approaches
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Introduction

This paper

Presents the theory of Marginal Treatment Effects aimed at the
applied empiricist
Highlights similarities to selection models and control function
approaches
Introduces the new Stata package mtefe for estimating MTEs
Performs Monte Carlo simulations to investigate the robustness of
the estimators
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Introduction

A motivating example: College and wages

D = a+bX + cZ +

unobserved︷ ︸︸ ︷
dability+ eZ × ability+ µ

w = f+gX + hD + iability+ jD × ability+ ε︸ ︷︷ ︸
unobserved

If d 6= 0 6= i : Selection problem
If j = 0: IV recovers the ATE with a valid instrument Z
If j 6= 0: IV recovers a local average treatment effect
Relative size of LATE vs. ATE depends on

what individuals are shifted into treatment by the instrument - e
what individuals have higher or lower treatment effects - j
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Marginal treatment effects

A generalized Roy model

Yj = µj(X ) + Uj for j = 0, 1 (1)

Y = DY1 + (1− D)Y0 (2)

D = 1 [Zγ > V ] where Z = X ,Z− (3)

Without loss of generality normalize the scale of V
D = 1⇔ γZ > V ⇔ FV (Zγ) > FV (V )⇔ P(Z ) > UD

UD ∼ U(0, 1): Percentiles of the unobserved resistance

Treatment effect: β = Y1 − Y0 = µ1(X )− µ0(X ) + U1 − U0

With essential heterogeneity: Sorting on unobserved gains
cov(β,D | X ) 6= 0
Treatment decision made with knowledge of unobserved gains
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Marginal treatment effects

Marginal Treatment Effects

MTE(x , u) ≡ E(Y1 − Y0|Ud = u,X = x)

= µ1(x)− µ0(x) + E(U1 − U0 | UD = u)

Average β for people with a particular distaste for treatment and x

Björklund and Moffitt (1987), Heckman and coauthors (1997; 1999; 2005; 2007), Cornelissen
et al. (2016); Brinch et al. (2015).
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Marginal treatment effects

LATE vs MTE

With two particular values of an instrument, z and z ′, the Wald estimator is

LATE(x) =
E(Y |X = x ,Z− = z ′)− E(Y |X = x ,Z− = z)

E(D|X = x ,Z− = z ′)− E(D|X = x ,Z− = z)

This is a Local Average Treatment Effect

People who choose treatment when Z− = z ′, but not when Z− = z

In the choice model: People with P(x , z ′) < UD ≤ P(x , z):

LATE(x , z , z ′) = µ1(x)− µ0(x) + E(U1 − U0|P(x , z ′) < UD ≤ P(x , z))

MTE(x , u) = µ1(x)− µ0(x) + E(U1 − U0|UD = u)

MTE is a limit form of LATE (Heckman, 1997)
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Marginal treatment effects

Back to the motivating example

D = a+bX + cZ +

unobserved︷ ︸︸ ︷
dability+ eZ × ability+ µ

w = f+gX + hD + iability+ jD × ability+ ε︸ ︷︷ ︸
unobserved

In the choice model, every omitted variable will enter U0,U1,UD .
High-ability people will have lower UD if d > 0
...and higher unobserved treatment effects (U1 − U0) if j > 0
Should lead to a downward sloping MTE - cov(U1 − U0,UD) < 0

This selection pattern is precisely what MTE estimates
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Marginal treatment effects

An example MTE curve
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Estimating MTEs

Standard IV assumptions

Interpreting IV as LATE (Imbens and Angrist, 1994) requires:

Exclusion Yj ⊥ Z−|X . The instrument affect outcomes only through the
probability of treatment | X

Relevance P(z) 6= P(z ′). Treatment is a nontrivial function of the
instrument

Monotonicity P(z) ≥ P(z ′) ∀i two values of the instrument cannot shift
some people in and others out

Monotonicity should hold between all possible pairs z , z ′

These assumptions imply and are implied by the model in Eq. 1-3
(Vytlacil, 2002)
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Estimating MTEs

The separability assumption

Best case scenario: Estimate MTEs with no more assumptions than IV
Estimate MTE within each cell of X , aggregate
In practice: Limited data and support. Instead assume

Separability E(Uj | X ,UD) = E(Uj | UD)

Implied by, but weaker than, full independence
All X do is shift the MTE curve up or down
Same assumption as in selection models

Usually also work with linear version of µj(x) = xβj
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Estimating MTEs

Estimation methods

First estimate the propensity scores P(Z )

Local Instrumental Variables
The derivative of the conditional expectation of Y wrt. p
MTE(x , u) = ∂E(Y |x,p)

∂p |u=p

Separate approach
Estimate outcome given x , p separately controlling selection
MTE(x , u) = E(Y1 | x ,UD = u)− E (Y0 | x ,UD = u)
Control selection via control function - similar to selection models

Maximum likelihood (joint normal model only)
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Estimating MTEs

Functional forms

(U0,U1,V ) joint normal: Heckman selection

E(Uj | UD = u) =
∑K

1 πk(uk − 1
k+1): polynomial model

Polynomial model with splines
Semiparametric model

Estimate partial linear model of
E(Y | X , p) = Xβ0 + X (β1 − β0)p + K (p)
Using double residual regression (Robinson, 1988)
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The mtefe package

The mtefe package

Acceps fixed effects in all independent varlists
Supports weights (pweights, fweights)
Supports Local IV, separate approach and maximum likelihood
estimation
More flexible MTE models, including spline functions
Calculates treatment effect parameters from results
Analytic standard errors and bootstrap including first stage
Improved graphical output (mtefeplot)

Brave and Walstrum (2014)
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The mtefe package

The mtefe command

mtefe depvar
[
indepvars

]
(depvar t = varlist iv )

[
if
] [

in
] [

weight
] [

,

polynomial(#) splines(numlist) semiparametric restricted(varlistr)

separate mlikelihood link(string) + other options
]

Follows Stata’s IV syntax
Accepts fixed effects (i.varname)
Several options follow similar options in margte
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The mtefe package

Example output I

. mtefe_gendata, obs(10000) districts(10)
.
. mtefe lwage exp exp2 i.district (col=distCol)
Parametric normal MTE model Observations : 10000
Treatment model: Probit
Estimation method: Local IV

lwage Coef. Std. Err. t P>|t| [95% Conf. Interval]

beta0
exp .0358398 .0064408 5.56 0.000 .0232145 .0484651

exp2 -.0008453 .0002019 -4.19 0.000 -.0012411 -.0004496

district
2 .2352456 .0680412 3.46 0.001 .1018712 .36862
3 .6294914 .0701091 8.98 0.000 .4920634 .7669194
4 .0131179 .0597721 0.22 0.826 -.1040474 .1302832
5 .0338606 .0705835 0.48 0.631 -.1044974 .1722186
6 .1699366 .0605086 2.81 0.005 .0513275 .2885458
7 -.1899241 .060115 -3.16 0.002 -.3077617 -.0720865
8 -.1842254 .0676843 -2.72 0.007 -.3169003 -.0515504
9 -.7908301 .0578436 -13.67 0.000 -.9042153 -.677445

10 -.4432749 .0597237 -7.42 0.000 -.5603455 -.3262044

_cons 3.164706 .0650331 48.66 0.000 3.037228 3.292184

beta1-beta0
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The mtefe package

Example output II

exp -.0386384 .010241 -3.77 0.000 -.0587128 -.018564
exp2 .0012967 .0003288 3.94 0.000 .0006523 .0019412

district
2 .265112 .107039 2.48 0.013 .0552939 .4749301

(output omitted )
10 .3143661 .1072555 2.93 0.003 .1041237 .5246085

_cons .4255863 .0983572 4.33 0.000 .2327863 .6183863

k
mills -.4790282 .0611081 -7.84 0.000 -.5988124 -.359244

effects
ate .3283373 .0242932 13.52 0.000 .2807177 .3759568
att .5369432 .0388809 13.81 0.000 .4607287 .6131576

atut .1195067 .0384691 3.11 0.002 .0440995 .194914
late .3279726 .0245142 13.38 0.000 .2799198 .3760254

mprte1 .3463148 .0256971 13.48 0.000 .2959433 .3966862
mprte2 .3309428 .024298 13.62 0.000 .2833137 .3785719
mprte3 -.016257 .0498984 -0.33 0.745 -.1140679 .0815538

Test of observable heterogeneity, p-value 0.0000
Test of essential heterogeneity, p-value 0.0000

Note: Analytical standard errors ignore the facts that the propensity score,
(output omitted )

Martin Andresen (SSB) Exploring MTEs Oslo, 2018 17 / 25



The mtefe package

Marginal Treatment Effects of college
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The mtefe package

Interpreting heterogeneity

The unobserved dimension
Depends on what is observed!
Positive selection on unobserved gains: MTE is downward sloping

In line with predictions from a simple Roy model
Consistent with treatment decisions made with knowledge of
unobserved gains

The observed dimension
Positive selection if γ × (β1 − β0) > 0

X that leads to more treatment also leads to higher treatment effects

Negative selection if γ × (β1 − β0) < 0
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The mtefe package

MTEs unify treatment effect parameters

Using MTE(x , u), we can calculate any treatment effect parameter as

∫ 1

0
ω(u)MTE(x̄ , u)du = x̄(β1 − β0) +

∫ 1

0
ω(u)k(u)du

ω(u) is the density of UD in the population of interest
x̄ is the average x in the population of interest

Where the population of interest depends on the parameter:
ATE: Everyone, ω(u) = 1, x̄ is average x

ATT: Population has D = 1⇔ UD ≤ p, x̄ is average among treated
ATUT: Population has D = 0⇔ UD > p, x̄ is average among
untreated
LATE/IV: Population is compliers
PRTE/MPRTE: Population is people shifted by policy
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The mtefe package

Local Average Treatment Effects
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Conclusion

Practical advice for users

Interpret the unobserved dimension in light of observables
Know your setting, argue explicitly for what UD could pick up
Use this to defend the separability assumption
Use semiparametric methods to guide your choice of functional form
Show robustness to

Choice of functional form
Use of estimation method

Martin Andresen (SSB) Exploring MTEs Oslo, 2018 22 / 25



Conclusion

Conclusion

Marginal treatment effects should be in your toolbox
Heterogeneous returns is the more reasonable baseline case
MTE analysis estimate the full distribution of treatment effects
and thus go beyond LATE

But usually at the cost of stricter assumptions
Unless you have an instrument that work without covariates and
generate full support

...but MTE aren’t all that new - closely related to selection models.
The mtefe package does the work for you (please report bugs)
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