Estimating effects from extended regression models

David M. Drukker

Executive Director of Econometrics
Stata

2017 Nordic and Baltic Stata Users Group meeting
Karolinska Institutet
1 September 2017
Extended regression models

Extended regression model (ERM) is a Stata term for a class of regression models

- The outcome can be continuous (linear), probit, ordered probit, or censored (tobit)
- Some of the covariates may be endogenous
 - The endogenous covariates may be continuous, probit, or ordered probit
- Endogenous sample-selection may be modeled
- Exogenous or endogenous treatment assignment may be modeled
- The new-in-Stata-15 commands eregress, eprobit, eoprobit, and eintreg fit ERMs
Extended regression models

- Some of the covariates may be endogenous
 - The endogenous covariates may be continuous, binary, or ordinal
 - Polynomial terms and interaction terms constructed from the endogenous covariates are allowed
 - Interactions among the endogenous covariates and interactions between the endogenous covariates and the exogenous covariates are allowed
Outline

- I cannot do justice to ERMs in this short talk
- I discuss examples in which I
 - define some of the terms that I have already used
 - illustrate some command syntax
 - illustrate how to estimate some effects using postestimation commands
Fictional data on wellness program from large company

. use wprogram
. describe
Contains data from wprogram.dta
 obs: 3,000
 vars: 6
 size: 72,000

storage display value variable name type format label variable label

wchange float %9.0g changel Weight change level
age float %9.0g Years over 50
over float %9.0g Overweight (tens of pounds)
phealth float %9.0g Prior health score
prog float %9.0g Participate in wellness program
wtprog float %9.0g Offered work time to participate in program

Sorted by:
Three levels of weight change

<table>
<thead>
<tr>
<th>Weight change level</th>
<th>Participate in wellness program</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Loss</td>
<td>239</td>
<td>909</td>
</tr>
<tr>
<td>No change</td>
<td>468</td>
<td>605</td>
</tr>
<tr>
<td>Gain</td>
<td>593</td>
<td>186</td>
</tr>
<tr>
<td>Total</td>
<td>1,300</td>
<td>1,700</td>
</tr>
</tbody>
</table>

Data are observational

Table does not account for how observed covariates and/or unobserved errors that affect program participation also affect the outcome variable.
I want a model that

- allows observed covariates to affect both \(w_{\text{change}} \) and assignment to \(\text{prog} \)
- allows the errors that affect assignment to \(\text{prog} \) to be correlated with the errors that affect \(w_{\text{change}} \)
- I suspect that unobservables that increase program participation are negatively correlated with unobservables that affect weight gain

In other words, I want allow \(\text{prog} \) to be endogenous
If \(\text{prog} \) is endogenous, I must model the dependence.

Consider

\[
\text{wchange} = \begin{cases}
 \text{“Loss”} & \text{if } \beta_1 \text{prog} + x\beta + \epsilon \leq \text{cut1} \\
 \text{“No change”} & \text{if } \text{cut1} < \beta_1 \text{prog} + x\beta + \epsilon \leq \text{cut2} \\
 \text{“Gain”} & \text{if } \text{cut2} < \beta_1 \text{prog} + x\beta + \epsilon
\end{cases}
\]

\[
\text{prog} = (x\gamma + \gamma_1 \text{wtime} + \eta > 0)
\]

\(\epsilon \) and \(\eta \) are correlated and joint normal

\[
x\beta = \beta_2 \text{age} + \beta_3 \text{over} + \beta_4 \text{phealth}
\]

\[
x\gamma = \gamma_2 \text{age} + \gamma_3 \text{over} + \gamma_4 \text{phealth}
\]

- \(\text{wtime} \) is an instrumental variable
 - It is included in the model for treatment
 - It is excluded from the model for the potential outcomes of \(\text{wchange} \).
\[\text{wchange} = \begin{cases}
"Loss" & \text{if } \beta_1\prog + \x\beta + \epsilon \leq \text{cut1} \\
"No change" & \text{if } \text{cut1} < \beta_1\prog + \x\beta + \epsilon \leq \text{cut2} \\
"Gain" & \text{if } \text{cut2} < \beta_1\prog + \x\beta + \epsilon
\end{cases} \]

\[\prog = (x\gamma + \gamma_1\wtime + \eta > 0) \]

\(\epsilon \) and \(\eta \) are correlated and joint normal

\[x\beta = \beta_2\text{age} + \beta_3\text{over} + \beta_4\text{phealth} \]

\[x\gamma = \gamma_2\text{age} + \gamma_3\text{over} + \gamma_4\text{phealth} \]

Fit by: eoprobit wchange age over phealth ,

endog(prog = age over phealth wtime, probit)
. eoprobit wchange age over phealth, ///
> endog(prog = age over phealth wtprog, probit) ///
> vsquish nolog

Extended ordered probit regression
Number of obs = 3,000
Wald chi2(4) = 409.97
Log likelihood = -4401.0952 Prob > chi2 = 0.0000

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------|-----------|-----------|---------|-------|----------------------|
| wchange | | | | | |
| | wchange | | | | |
| age | .2155906 | .0705048 | 3.06 | 0.002 | .0774037 .3537776 |
| over | .4349946 | .0387185 | 11.23 | 0.000 | .3591078 .5108814 |
| phealth | -.4933361 | .0411866 | -11.98 | 0.000 | -.5740603 -.412612 |
| prog | -.3624996 | .1031408 | -3.51 | 0.000 | -.5646519 -.1603473 |

prog					
age	-.9341234	.0840002	-11.12	0.000	-1.098761 -.7694861
over	-1.058621	.0514252	-20.59	0.000	-1.159412 -.9578294
phealth	.9001108	.0504804	17.83	0.000	.801171 .9990507
wtprog	1.631615	.0780834	20.90	0.000	1.478574 1.784656
_cons	.0090842	.0535434	0.17	0.865	-.095859 .1140274

/wchange					
cut1	-.5897304	.0781626	-.7429264	-.4365345	
cut2	.5029323	.068292	.3690825	.6367821	

corr(e.prog, e.wchange) | -.3478179 | .0604422 | -5.75 | 0.000 | -.4603282 -.2243109 |
The coefficient on `wtprog` and its standard error give the impression that the instrument is relevant.
The nonzero correlation between `e.prog` and `e.wchange` indicates that `prog` is endogenous.

Those who are more likely to participate are more likely to lose weight.

| corr(e.prog, e.wchange) | -.3478179 | .0604422 | -5.75 | 0.000 | -.4603282 | -.2243109 |
When everyone joins the program instead of when no one participants in the program,

- On average, the probability of “Loss” goes up by .13
- On average, the probability of “No change” goes down by .02
- On average, the probability of “Gain” goes down by .11
- `fix(prog)` gets us the effect of the program that is not contaminated by the selection effect/correlation between ϵ and η that increases the participation among people more likely to lose weight.

- `predict(fix(prog))` tells `margins` to specify `fix(prog)` to predict when computing each predicted probability.

- `fix(prog)` causes the value of `prog` not to affect ϵ, even though they are correlated.
 - `fix(prog)` specifies that the part of ϵ that is correlated with $y2$ be integrated out.
This type of prediction is sometimes called the structural prediction or an average structural function; see Blundell and Powell (2003), Blundell and Powell (2004), Wooldridge (2010), and Wooldridge (2014),

The difference between the mean of the average of the structural predictions when \(\text{prog}=1 \) and the mean of the average of the structural predictions when \(\text{prog}=0 \) is an average treatment effect (Blundell and Powell (2003) and Wooldridge (2014))
The delta-method standard errors reported by `margins` hold the covariates fixed at their sample values.

The delta-method standard errors are for a sample-average treatment effect instead of a population-averaged treatment effect.

The sample-averaged treatment effect is for those individuals that showed up in that run of the treatment.

The population-averaged treatment effect is for a random draw of individuals from the population.

To get standard errors for the population-average treatment effect, specify `vce(robust)` to the estimation command and specify `vce(unconditional)` to `margins`.
quietly eoprobit wchange age over phealth, endog(prog = age over phealth wtprog, probit) vce(robust)
margins r.prog,
predict(fix(prog) outlevel("Loss"))
predict(fix(prog) outlevel("No change"))
predict(fix(prog) outlevel("Gain"))
contrast(nowald) vce(unconditional)

Contrasts of predictive margins
1. predict : Pr(wchange==Loss), predict(fix(prog) outlevel("Loss"))
2. predict : Pr(wchange==No change), predict(fix(prog) outlevel("No change"))
3. predict : Pr(wchange==Gain), predict(fix(prog) outlevel("Gain"))

<table>
<thead>
<tr>
<th>prog@_predict</th>
<th>Unconditional Contrast</th>
<th>Std. Err.</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Yes vs No) 1</td>
<td>.1259899</td>
<td>.0349061</td>
<td>.0575753 .1944045</td>
</tr>
<tr>
<td>(Yes vs No) 2</td>
<td>-.0185024</td>
<td>.0054389</td>
<td>-.0291624 -.0078424</td>
</tr>
<tr>
<td>(Yes vs No) 3</td>
<td>-.1074874</td>
<td>.0300866</td>
<td>-.1664561 -.0485188</td>
</tr>
</tbody>
</table>

matrix b = r(b)
More about ERM commands

- The commands `eregess`, `eprobit`, and `eintreg` fit ERMs handle continuous-and-unbounded, binary, and censored/corner outcomes.

