Modelling multiple timescales using flexible parametric survival models

Hannah Bower* Therese M-L. Andersson, Michael J. Crowther and Paul C. Lambert

*Department of Medical Epidemiology and Biostatistics
Karolinska Institutet, Sweden

Nordic and Baltic Stata Users Group meeting
1st September 2017
Defining the timescale(s) of interest is essential in any time-to-event analysis.
Different timescales could be important for different outcomes.
- For example, time since diagnosis when considering survival after a diagnosis of breast cancer.
- Or, attained age for the incidence of breast cancer.
There are occasions when several timescales are simultaneously of interest.
- Incidence of breast cancer: attained age & time since childbirth.
Suppose we have two timescales of interest. How are these commonly accounted for?
Suppose we have two timescales of interest. How are these commonly accounted for?

One option:

- Select the most important timescale as the primary timescale
- Split the data on the second timescale and include several indicator variables in the model for this second timescale
Suppose we have two timescales of interest. How are these commonly accounted for?

One option:

- Select the most important timescale as the primary timescale
- Split the data on the second timescale and include several indicator variables in the model for this second timescale
 - Splitting data and fitting models to split data can be computationally intensive
 - The effect of the second timescale is not continuous
Motivation

Suppose we have two timescales of interest. How are these commonly accounted for?

Another option:

- Select the most important timescale as the primary timescale
- Ignore the second timescale, or use some fixed time effect of the second timescale (e.g., age at diagnosis for attained age)
Suppose we have two timescales of interest. How are these commonly accounted for?

Another option:

- Select the most important timescale as the primary timescale
- Ignore the second timescale, or use some fixed time effect of the second timescale (e.g., age at diagnosis for attained age)
 - Won’t accurately account for the effect of the second timescale
Motivation

If we wanted to capture the effect of multiple timescales, how would we do it more accurately?
If we wanted to capture the effect of multiple timescales, how would we do it more accurately?

- Time increases in the same way independent of the scale
- Thus, one timescale is a function of the other
 - Where is the origin of the timescale?
If we wanted to capture the effect of multiple timescales, how would we do it more accurately?

- Time increases in the same way independent of the scale
- Thus, one timescale is a function of the other
 - Where is the origin of the timescale?
- For example, consider time since diagnosis of a disease t_{diag} and attained age t_{age}

\[t_{\text{age}} = \text{age}_{\text{diag}} + t_{\text{diag}} \]
Motivation

- If $t_{\text{diag}} = 5$ & $\text{age}_{\text{diag}} = 55$, $t_{\text{age}} = 60$

Time since diagnosis

Attained age
The `strcs` command

- Previously developed `strcs` to model the log hazard using flexible parametric survival models (FPSMs)
- FPSMs usually model the log cumulative hazard
- Initially `strcs` was developed to deal with problems when modelling multiple time-dependent effects
- We realised they could be used to model multiple timescales
Flexible parametric survival models (FPSMs) use restricted cubic splines (RCS) to model some form of the hazard function.

- RCS are piecewise cubic polynomials joined together at points called knots.
 - Continuous 1st, and 2nd derivatives at the knots, linear before first and after last knot.

- RCS are able to capture complex hazard functions which standard parametric models may struggle to capture.
Non-proportional FPSM on the log hazard scale looks like:

\[
\ln(h(t; x)) = s(\ln(t); \gamma_0) + \mathbf{x} \beta + \sum_{k=1}^{D} s(\ln(t); \gamma_k) x_k
\]
Maximum likelihood estimation

Log-likelihood

\[\ln L_i = d_i \ln \{ h(t_i) \} - H(t_i) \]

- \(d_i \) = event indicator
- \(h(t_i) \) = hazard function
- \(H(t_i) \) = cumulative hazard function

\[H(t_i) = \int_0^t h(u_i) \, du \]
Log-likelihood

\[\ln L_i = d_i \ln \{ h(t_i) \} - H(t_i) \]

- **FPSMs on the log hazard scale**: numerical integration required to get cumulative hazard function

\[H(t_i) = \int_0^t h(u_i) du \]
The \texttt{stmt} command

- \texttt{stmt} is a Stata command which fits multiple timescales using FPSMs on the log hazard scale
- Is specifically designed to model multiple timescales and is an extension of \texttt{strcs}
- \texttt{stmt} uses Mata to numerically integrate the hazard function using Gaussian quadrature
- The first timescale is specified using the \texttt{stset} command
- Still being developed
stm syntax

stm varlist, [time1(sub-options) time2(sub-options)
time3(sub-options) ...]

Timescale-specific sub-options

- df(#) - degrees of freedom for effect of timescale
- start(varname) - starting value of second & third timescales
- tvc(varlist) - variables with time-dependent effects
- logtoff - create restricted cubic spline for untransformed time
 (default is log time scale)
- Plus other options & timescale-specific sub-options found in the
 stpm2 and strcs commands
Example: Orchiectomy dataset

- Swedish prostate cancer patients (60,961 observations)
- Interested in risk of hip fracture after bilateral orchiectomy
- Timescales of interest:
 - Time since diagnosis of prostate cancer
 - Attained age
- Variable of interest is \texttt{orch}, indicator for orchiectomy
Example: Two timescales, proportional hazards

```
. stset dateexit, fail(frac = 1) enter(datecancer)
> origin(datecancer) scale(365.25)

. stmt orch, time1(df(3)) time2(start(agediag) df(5) logtoff)
```
Example: Two timescales, proportional hazards

\[\ln(h(t)) = s_{t1}(\ln(t); \gamma_{t1}) + s_{t2}(t + age_{diag}; \gamma_{t2}) + orch \]
Example: Two timescales, proportional hazards

```
. stmt orch, time1(df(3)) time2(start(agediag) df(5) logtoff)
```

Log likelihood = -7464.385 Number of obs = 60,961

| Haz. Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------------|-----------|------|------|----------------------|
| xb | | | | |
| orch | 1.579357 | .083613 | 8.63 | 0.000 | 1.423694 | 1.75204 |
| rcs | | | | |
| __t1_s1 | .0129676 | .025773 | 0.50 | 0.615 | -.0375467 | .0634818 |
| __t1_s2 | -.0206878 | .0251947 | -0.82 | 0.412 | -.0700686 | .028693 |
| __t1_s3 | .0235215 | .0259144 | 0.91 | 0.364 | -.0272698 | .0743129 |
| __t2_s1 | .6799227 | .0332591 | 20.44 | 0.000 | .6147361 | .7451092 |
| __t2_s2 | -.1234378 | .0342275 | -3.61 | 0.000 | -.1905225 | -.0563532 |
| __t2_s3 | .0913521 | .0296776 | 3.08 | 0.002 | .0331852 | .1495191 |
| __t2_s4 | .0038328 | .0248068 | 0.15 | 0.877 | -.0447878 | .0524533 |
| __t2_s5 | .0180132 | .0214929 | 0.84 | 0.402 | -.0241121 | .0601384 |
| _cons | -5.17632 | .0348153 | -148.68 | 0.000 | -5.244557 | -5.108084 |
Example: Two timescales, proportional hazards

```
. stmt orch, time1(df(3)) time2(start(agediag) df(5) logtoff)
Log likelihood =  -7464.385 Number of obs =  60,961
-----------------------------------------------------------------------------
| Haz. Ratio Std. Err.   z  P>|z|  [95% Conf. Interval]            
-------------+----------------------------------------------------------------
xb           
   orch       |  1.579357   .083613   8.63 0.000  1.423694   1.75204
-------------+----------------------------------------------------------------
rcs          
   __t1_s1   |  .0129676   .025773   0.50 0.615  -.0375467  .0634818
   __t1_s2   | - .0206878  .0251947  -0.82 0.412  -.0700686  .028693
   __t1_s3   |  .0235215  .0259144   0.91 0.364  -.0272698  .0743129
   __t2_s1   |  .6799227  .0332591  20.44 0.000  .6147361   .7451092
   __t2_s2   | - .1234378  .0342275  -3.61 0.000  -.1905225  -.0563532
   __t2_s3   |  .0913521  .0296776   3.08 0.002   .0331852  .1495191
   __t2_s4   |  .0038328  .0248068   0.15 0.877  -.0447878  .0524533
   __t2_s5   |  .0180132  .0214929   0.84 0.402  -.0241121  .0601384
   _cons     | -5.17632  .0348153 -148.68 0.000 -5.244557  -5.108084
-------------+----------------------------------------------------------------
```

Hannah Bower
Nordic and Baltic Stata Users Group meeting
1st September 2017 15 / 25
Example: Two timescales, proportional hazards

```
. stmt orch, time1(df(3)) time2(start(agediag) df(5) logtoff)

Log likelihood = -7464.385  Number of obs = 60,961
------------------------------------------------------------------------------
| Haz. Ratio Std. Err.  z  P>|z|  [95% Conf. Interval]  
-------------+----------------------------------------------------------------
xb |      orch | 1.579357  .083613  8.63  0.000    1.423694    1.75204
-------------+----------------------------------------------------------------
rcs |      _t1_s1 |  .0129676  .025773  0.50  0.615   -0.0375467    0.0634818
          _t1_s2 |  -.0206878  .0251947 -0.82  0.412   -.0700686    .0286930
          _t1_s3 |   .0235215  .0259144  0.91  0.364   -.0272698    .0743129
          _t2_s1 |  .6799227  .0332591 20.44  0.000    .6147361    .7451092
          _t2_s2 |  -.1234378  .0342275 -3.61  0.000   -.1905225   -.0563532
          _t2_s3 |   .0913521  .0296776  3.08  0.002    .0331852    .1495191
          _t2_s4 |   .0038328  .0248068  0.15  0.877   -.0447878    .0524533
          _t2_s5 |   .0180132  .0214929  0.84  0.402   -.0241121    .0601384
          _cons |  -5.17632  .0348153 -148.68  0.000    -5.244557    -5.108084
------------------------------------------------------------------------------
```
Example: Two timescales, non-proportional hazards

```
. stmt orch, time1(df(3)) ///
   > time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))
```

Log likelihood = -7454.3291 Number of obs = 60,961

<table>
<thead>
<tr>
<th>Haz. Ratio Std. Err. z P></th>
<th>z</th>
<th>[95% Conf. Interval]</th>
</tr>
</thead>
<tbody>
<tr>
<td>xb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>orch</td>
<td>1.770931 .1044573 9.69 0.000 1.57759 1.987968</td>
<td></td>
</tr>
<tr>
<td>rcs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>__t1_s1</td>
<td>0.0142601 .0258053 0.55 0.581 -.0363173 .0648376</td>
<td></td>
</tr>
<tr>
<td>__t1_s2</td>
<td>-0.0196129 .0251721 -0.78 0.436 -.0689494 .0297235</td>
<td></td>
</tr>
<tr>
<td>__t1_s3</td>
<td>0.0268569 .0258941 1.04 0.300 -.0238946 .0776085</td>
<td></td>
</tr>
<tr>
<td>__t2_s1</td>
<td>0.7620801 .0410964 18.54 0.000 .6815326 .8426276</td>
<td></td>
</tr>
<tr>
<td>__t2_s2</td>
<td>-0.1308936 .0415365 -3.15 0.002 -.2123036 -.0494835</td>
<td></td>
</tr>
<tr>
<td>__t2_s3</td>
<td>0.1362839 .0345208 3.95 0.000 .0686243 .2039435</td>
<td></td>
</tr>
<tr>
<td>__t2_s4</td>
<td>0.0188686 .0258904 0.73 0.466 -.0318756 .0696129</td>
<td></td>
</tr>
<tr>
<td>__t2_s5</td>
<td>0.0165599 .0216135 0.77 0.444 -.0258018 .0589216</td>
<td></td>
</tr>
<tr>
<td>__t2_s_orch1</td>
<td>-0.2428242 .0686272 -3.54 0.000 -.3773311 -.1083172</td>
<td></td>
</tr>
<tr>
<td>__t2_s_orch2</td>
<td>-0.0150246 .0680762 -0.22 0.825 -.1484516 .1184023</td>
<td></td>
</tr>
<tr>
<td>__t2_s_orch3</td>
<td>-0.1123459 .0509553 -2.20 0.027 -.2122165 -.0124754</td>
<td></td>
</tr>
<tr>
<td>_cons</td>
<td>-5.213729 .0370125 -140.86 0.000 -5.286272 -5.141186</td>
<td></td>
</tr>
</tbody>
</table>
```
Example: Two timescales, non-proportional hazards

```
. stmt orch, time1(df(3)) ///
> time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))

Log likelihood = -7454.3291 Number of obs = 60,961

| Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval] |
|-----------------|-----------------|-------|-----|------------------|
xb
| | | | | |
| orch | 1.770931 | .1044573 | 9.69 | 0.000 | 1.57759 | 1.987968 |
rcs
| | | | | | | |
| __t1_s1 | 0.0142601 | 0.0258053 | 0.55 | 0.581 | -0.0363173 | 0.0648376 |
| __t1_s2 | -0.0196129 | 0.0251721 | -0.78 | 0.436 | -0.0689494 | 0.0297235 |
| __t1_s3 | 0.0268569 | 0.0258941 | 1.04 | 0.300 | -0.0238946 | 0.0776085 |
| __t2_s1 | 0.7620801 | 0.0410964 | 18.54 | 0.000 | 0.6815326 | 0.8426276 |
| __t2_s2 | -0.1308936 | 0.0415365 | -3.15 | 0.002 | -0.2123036 | -0.0494835 |
| __t2_s3 | 0.1362839 | 0.0345208 | 3.95 | 0.000 | 0.0686243 | 0.2039435 |
| __t2_s4 | 0.0188686 | 0.0258904 | 0.73 | 0.466 | -0.0318756 | 0.0696129 |
| __t2_s5 | 0.0165599 | 0.0216135 | 0.77 | 0.444 | -0.0258018 | 0.0589216 |
| __t2_s_orch1 | -0.2428242 | 0.0686272 | -3.54 | 0.000 | -0.3773311 | -0.1083172 |
| __t2_s_orch2 | -0.0150246 | 0.0680762 | -0.22 | 0.825 | -0.1484516 | 0.1184023 |
| __t2_s_orch3 | -0.1123459 | 0.0509553 | -2.20 | 0.027 | -0.2122165 | -0.0124754 |
| _cons | -5.213729 | 0.0370125 | -140.86 | 0.000 | -5.286272 | -5.141186 |
```
Predictions

- We are in the process of writing a predict command to be used after `stmt`.
- Interested in predicting:
  - Hazard for different values of the timescales
  - Survival
  - Hazard ratio over time
  - Hazard differences
  - Others?
Predictions: current syntax

\[
\text{predict } \textit{newvar}, \{ \text{hazard} \mid \text{xb} \} [\text{startt1}(\#) \text{ startt2}(\#) \\
\text{ startt3}(\#) \text{ followup}(\#) \text{ n}(\#) \text{ at(\textit{varname} \# ...)} \text{ zeros} ]
\]

Options

- \text{startt1}(\#) - Prediction entry time for timescale 1
- \text{startt2}(\#) - Prediction entry time for timescale 2 (etc. for timescale 3)
- \text{followup}(\#) - Follow-up time for prediction
- \text{n}(\#) - How many intervals are needed for predictions up to the follow-up
- \text{at(\textit{varname} \#)} - Predict at values of other variables in the model
- Others are to be included
Prediction example

```
. stmt orch, time1(df(3)) ///
 > time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))
```
. stmt orch, time1(df(3)) ///
  > time2(start(agediag) df(5) logtoff tvc(orch) dftvc(3))

. predict haz, hazard startt1(0) startt2(70) followup(3) ///
  > n(10) at(orch 1)
## Prediction example

<table>
<thead>
<tr>
<th>t1_haz</th>
<th>t2_haz</th>
<th>haz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>70</td>
<td>.</td>
</tr>
<tr>
<td>.3</td>
<td>70.3</td>
<td>.00508109</td>
</tr>
<tr>
<td>.6</td>
<td>70.6</td>
<td>.00512982</td>
</tr>
<tr>
<td>.9</td>
<td>70.9</td>
<td>.0052459</td>
</tr>
<tr>
<td>1.2</td>
<td>71.2</td>
<td>.00538255</td>
</tr>
<tr>
<td>1.5</td>
<td>71.5</td>
<td>.00552947</td>
</tr>
<tr>
<td>1.8</td>
<td>71.8</td>
<td>.00568337</td>
</tr>
<tr>
<td>2.1</td>
<td>72.1</td>
<td>.00584082</td>
</tr>
<tr>
<td>2.4</td>
<td>72.4</td>
<td>.0059984</td>
</tr>
<tr>
<td>2.7</td>
<td>72.7</td>
<td>.00615495</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>.00631038</td>
</tr>
</tbody>
</table>
forvalues age = 70(5)85 {
    predict haz_`age', hazard startt1(0) startt2('age') ///
    followup(5) n(200) at(orch 1)
}

Prediction example
Prediction example

Fracture rate (per person-year) vs. Time since diagnosis

- 70 years
- 75 years
- 80 years
- 85 years
Prediction example

Fracture rate (per person-year)

Attained age

70 years
75 years
80 years
85 years

Hannah Bower
Nordic and Baltic Stata Users Group meeting
1st September 2017
Interactions between the timescales
Allow timescales for some individuals and not others
More timescales?
Predictions
Suggestions?
Advantages and disadvantages

Disadvantages

- Numerical integration can be slow if you have large datasets
  - \( N = 686 \), model fits in \( \approx 6 \) secs
  - \( N = 60961 \), model fits in \( \approx 40 \) secs
  - \( N = 423298 \), model fits in \( \approx 9 \) mins
- A Poisson model with split data to model the second timescale will take a while to fit

Advantages

- Easy way for users to model multiple timescales & get predictions
- Models multiple timescales in a continuous way
strcs: A command for fitting flexible parametric survival models on
the log-hazard scale.

Flexible parametric proportional-hazards and proportional-odds
models for censored survival data, with application to prognostic
modelling and estimation of treatment effects.