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What do we want to estimate?

A question

Will a mother hurt her child by smoking while she is pregnant?

Too vague

Will a mother reduce the birthweight of her child by smoking while
she is pregnant?

Less interesting, but more specific
There might even be data to help us answer this question
The data will be observational, not experimental
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What do we want to estimate?

Potential outcomes

For each treatment level, there is a potential outcome that we would
observe if a subject received that treatment level

Potential outcomes are the data that we wish we had to estimate
causal treatment effects

In the example at hand, the two treatment levels are the mother
smokes and the mother does not smoke

For each treatment level, there is an outcome (a baby’s birthweight)
that would be observed if the mother got that treatment level
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What do we want to estimate?

Potential outcomes

Suppose that we could see

1 the birthweight of a child born to each mother when she smoked while
pregnant, and

2 the birthweight of a child born to each mother when she did not smoke
while pregnant

For example, we wish we had data like
. list mother_id bw_smoke bw_nosmoke in 1/5, abbreviate(10)

mother_id bw_smoke bw_nosmoke

1. 1 3183 3509
2. 2 3060 3316
3. 3 3165 3474
4. 4 3176 3495
5. 5 3241 3413
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What do we want to estimate?

Average treatment effect

If we had data on each potential outcome, the sample-average
treatment effect would be the sample average of bw smoke minus
bw nosmoke

. mean bw_smoke bw_nosmoke
Mean estimation Number of obs = 4,642

Mean Std. Err. [95% Conf. Interval]

bw_smoke 3171.72 .9088219 3169.938 3173.501
bw_nosmoke 3402.599 1.529189 3399.601 3405.597

. lincom _b[bw_smoke] - _b[bw_nosmoke]
( 1) bw_smoke - bw_nosmoke = 0

Mean Coef. Std. Err. t P>|t| [95% Conf. Interval]

(1) -230.8791 1.222589 -188.84 0.000 -233.276 -228.4823

In population terms, the average treatment effect is

ATE = E[bwsmoke − bwnosmoke ] = E[bwsmoke ]− E[bwnosmoke ]
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What do we want to estimate?

Missing data

The “fundamental problem of causal inference” (Holland (1986)) is
that we only observe one of the potential outcomes

The other potential outcome is missing

1 We only see bwsmoke for mothers who smoked
2 We only see bwnosmoke for mothers who did not smoked

We can use the tricks of missing-data analysis to estimate treatment
effects

For more about potential outcomes Rubin (1974), Holland (1986),
Heckman (1997), Imbens (2004), (Cameron and Trivedi, 2005,
chapter 2.7), Imbens and Wooldridge (2009), and (Wooldridge, 2010,
chapter 21)
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What do we want to estimate?

Random-assignment case

Many questions require using observational data, because
experimental data would be unethical

We could not ask a random selection of pregnant women to smoke
while pregnant

The random-assignment methods used with experimental data are
useful, because observational-data methods build on them

When the treatment is randomly assigned, the potential outcomes are
independent of the treatment

If smoking were randomly assigned to mothers, the missing potential
outcome would be missing completely at random

1 The average birthweight of babies born to mothers who smoked would
be a good estimator for mean of the smoking potential outcome of all
mothers in the population

2 The average birthweight of babies born to mothers who did not smoke
would be a good estimator for mean of the not-smoking potential
outcome of all mothers in the population

6 / 59



What do we want to estimate?

As good as random

Instead of assuming that the treatment is randomly assigned, we
assume that the treatment is as good as randomly assigned after
conditioning on covariates

Formally, this assumption is known as conditional independence

Even more formally, we only need conditional mean independence
which says that after conditioning on covariates, the treatment does
not affect the means of the potential outcomes
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What do we want to estimate?

Assumptions used with observational data

The assumptions we need vary over estimator and effect parameter,
but some version of the following assumptions are required for the
exogenous treatment estimators discussed here

CMI The conditional mean-independence CMI assumption restricts the
dependence between the treatment model and the potential outcomes

Overlap The overlap assumption ensures that each individual could get any
treatment level

IID The independent-and-identically-distributed (IID) sampling assumption
ensures that the potential outcomes and treatment status of each
individual are unrelated to the potential outcomes and treatment
statuses of all the other individuals in the population

Endogenous treatment effect models replace CMI with a weaker
assumption

In practice, we assume independent observations, not IID
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What do we want to estimate?

Some references for assumptions

For Reference Only

Versions of the CMI assumption are also known as unconfoundedness
and selection-on-observables in the literature; see Rosenbaum and
Rubin (1983), Heckman (1997), Heckman and Navarro-Lozano
(2004), (Cameron and Trivedi, 2005, section 25.2.1), (Tsiatis, 2006,
section 13.3), (Angrist and Pischke, 2009, chapter 3), Imbens and
Wooldridge (2009), and (Wooldridge, 2010, section 21.3)

Rosenbaum and Rubin (1983) call the combination of conditional
independence and overlap assumptions strong ignorability; see also
(Abadie and Imbens, 2006, pp 237-238) and Imbens and Wooldridge
(2009).

The IID assumption is a part of what is known as the stable unit
treatment value assumption (SUTVA); see (Wooldridge, 2010, p.905)
and Imbens and Wooldridge (2009)
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Estimators: Overview

Choice of auxiliary model

Recall that the potential-outcomes framework formulates the
estimation of the ATE as a missing-data problem

We use the parameters of an auxiliary model to solve the missing-data
problem

The auxiliary model is how we condition on covariates so that the
treatment is as good as randomly assigned

Model Estimator
outcome → Regression adjustment (RA)

treatment → Inverse-probability weighted (IPW)
outcome and treatment → Augmented IPW (AIPW)
outcome and treatment → IPW RA (IPWRA)

outcome (nonparametrically) → Nearest-neighbor matching (NNMATCH)
treatment → Propensity-score matching (PSMATCH)
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Estimators: RA

Regression adjustment estimators

Regression adjustment (RA) estimators:

RA estimators run separate regressions for each treatment level, then

means of predicted outcomes using all the data and the estimated
coefficients for treatment level i all the data estimate POMi

use differences of POMs, or conditional on the treated POMs, to
estimate ATEs or ATETs

Formally, the CMI assumption implies that our regressions of observed y
for a given treatment level directly estimate E[yt |xi ]

yt is the potential outcome for treatment level t
xi are the covariates on which we condition
Averages of predicted E[yt |xi ] yield estimates of the POM E[yt ] because

1/N
∑N

i=1 Ê[yt |xi ] →p Ex [Ê[yt |xi ]] = E[yt ]

See (Cameron and Trivedi, 2005, chapter 25), (Wooldridge, 2010,
chapter 21), and (Vittinghoff et al., 2012, chapter 9)
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Estimators: RA

RA example

. use cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects ra (bweight mmarried prenatal1 fbaby medu) (mbsmoke)
Iteration 0: EE criterion = 2.336e-23
Iteration 1: EE criterion = 5.702e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke
(smoker

vs
nonsmoker) -230.9541 24.34012 -9.49 0.000 -278.6599 -183.2484

POmean
mbsmoke

nonsmoker 3402.548 9.546721 356.41 0.000 3383.836 3421.259

When all pregnant women smoke the average baby birthweight is
estimated to be 231 grams less than when no pregnant women smoke
The average birthweight when no pregnant women smoke is
estimated to be 3403 grams
RA with linear regression to model outcome
teffects ra can also model the outcome using probit, logit,
heteroskedastic probit, exponential conditional mean, or poisson
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Estimators: RA

RA exponential-mean example

. teffects ra (bweight mmarried prenatal1 fbaby medu, poisson) (mbsmoke)
Iteration 0: EE criterion = 3.926e-17
Iteration 1: EE criterion = 1.666e-23
Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : Poisson
Treatment model: none

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke
(smoker

vs
nonsmoker) -230.7723 24.41324 -9.45 0.000 -278.6213 -182.9232

POmean
mbsmoke

nonsmoker 3402.497 9.547989 356.36 0.000 3383.783 3421.211

RA using exponential mean E[yt |x] = exp(xβt) because birthweights
are greater than 0

teffects ra can also model the outcome using probit, logit,
heteroskedastic probit, exponential mean, or poisson
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Estimators: RA

Why are the standard errors always robust?

have a multistep estimator
1 Regress y on x for not treated observations
2 Regress y on x for treated observations
3 Mean of all observations of predicted y given x from not-treated

regression estimates
4 Mean of all observations of predicted y given x from treated regression

estimates

Each step can be obtained by solving moment conditions yielding a
method of moments estimator known as an estimating equation (EE)
estimator

mi (θ) is vector of moment equations and m(θ) = 1/N
∑N

i=1 mi (θ)

The estimator for the variance-covariance matrix of the estimator has

the form 1/N(DMD ′) where D =
(

1
N

∂m(θ)
∂θ

)−1
and

M = 1
N

∑N
i=1 mi (θ)mi (θ)

Stacked moments do not yield a symmetric D, so no simplification
under correct specification
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Estimators: IPW

Inverse-probability-weighted estimators

Inverse-probability-weighted (IPW) estimators:

IPW estimators weight observations on the outcome variable by the
inverse of the probability that it is observed to account for the
missingness process
Observations that are not likely to contain missing data get a weight
close to one; observations that are likely to contain missing data get a
weight larger than one, potentially much larger
IPW estimators model the probability of treatment without any
assumptions about the functional form for the outcome model
In contrast, RA estimators model the outcome without any assumptions
about the functional form for the probability of treatment model

See Horvitz and Thompson (1952) Robins and Rotnitzky (1995),
Robins et al. (1994), Robins et al. (1995), Imbens (2000), Wooldridge
(2002), Hirano et al. (2003), (Tsiatis, 2006, chapter 6), Wooldridge
(2007) and (Wooldridge, 2010, chapters 19 and 21)

15 / 59



Estimators: IPW

. teffects ipw (bweight ) (mbsmoke mmarried prenatal1 fbaby medu)
Iteration 0: EE criterion = 1.701e-23
Iteration 1: EE criterion = 6.343e-27
Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke
(smoker

vs
nonsmoker) -231.1516 24.03183 -9.62 0.000 -278.2531 -184.0501

POmean
mbsmoke

nonsmoker 3402.219 9.589812 354.77 0.000 3383.423 3421.015

IPW with logit to model treatment

Could have used probit or heteroskedastic probit to model treatment

Estimator has stacked moment structure; score equations from
first-stage maximum-likelihood estimators are now moment equations
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Estimators: AIPW

Augmented IPW estimators

Augmented IPW (AIPW) estimators

Augmented-inverse-probability-weighted (AIPW) estimators model both
the outcome and the treatment probability
The estimating equation that combines both models is essentially an
IPW estimating equation with an augmentation term
AIPW estimator have the double-robust property

only one of the two models must be correctly specified to consistently
estimate the treatment effects

AIPW estimators can be more efficient than IPW or RA estimators

See Robins and Rotnitzky (1995), Robins et al. (1995), Lunceford and
Davidian (2004), Bang and Robins (2005), (Tsiatis, 2006, chapter
13), Cattaneo (2010), Cattaneo, Drukker, and Holland (2013)
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Estimators: AIPW

AIPW example I

. teffects aipw (bweight mmarried prenatal1 fbaby medu) ///
> (mbsmoke mmarried prenatal1 fbaby medu)
Iteration 0: EE criterion = 4.031e-23
Iteration 1: EE criterion = 2.180e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: logit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke
(smoker

vs
nonsmoker) -229.7809 24.96839 -9.20 0.000 -278.718 -180.8437

POmean
mbsmoke

nonsmoker 3403.122 9.564165 355.82 0.000 3384.376 3421.867

AIPW with linear model for outcome and logit for treatment

18 / 59



Estimators: AIPW

. teffects aipw (bweight mmarried prenatal1 fbaby medu, poisson) ///
> (mbsmoke mmarried prenatal1 fbaby medu, hetprobit(medu))
Iteration 0: EE criterion = 7.551e-16
Iteration 1: EE criterion = 8.767e-24
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : Poisson by ML
Treatment model: heteroskedastic probit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke
(smoker

vs
nonsmoker) -220.496 28.30292 -7.79 0.000 -275.9687 -165.0233

POmean
mbsmoke

nonsmoker 3402.429 9.557345 356.00 0.000 3383.697 3421.161

AIPW with exponential conditional mean model for outcome and
heteroskedastic probit for treatment

Could have used linear, poisson, logit, probit, or heteroskedastic
probit to model the outcome and probit, logit, or heteroskedastic logit
to model the treatment
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Checking for balance

Balance: As good as random

In the unobtainable case of a randomly assigned treatment, the
distribution of the covariates among those that get the treatment is
the same as the distribution of the covariates among those that do
not get the treatment

The distribution of the covariates is said to be “balanced” over the
treatment/control status

The estimators implemented in teffects use a model or matching
method to make the outcome conditionally independent of the
treatment by conditioning on covariates

If this model or matching method is well specified, it should balance
the covariates
Balance diagnostic techniques and tests check the specification of the
conditioning method used by a teffects
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Checking for balance

Balance with IPW

Rosenbaum and Rubin (1983) showed that the propensity score is a
balancing score

In particular, the treatment is conditionally independent of the
covariates after conditioning on the propensity score
Among the many applications of this result is the implication that IPW

means of covariates will be the same for treated and controls
The raw means of covariates will differ over treated and control
observations, but the IPW means will be similar
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Checking for balance

tebalance

tebalance implements diagnostics and a test for balance after
teffects

Diagnostics are statistics and graphical methods for which we do not
know the distribution under the null
A test is a statistic for which we know the distribution under the null

tebalance is new to Stata 14
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Checking for balance

An example using the Cattaneo data

Let’s look for evidence against balancing using the simple model

. clear all

. use cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. quietly teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby medu)
>
. tebalance summarize
Covariate balance summary

Raw Weighted

Number of obs = 4,642 4,642.0
Treated obs = 864 2,280.4
Control obs = 3,778 2,361.6

Standardized differences Variance ratio
Raw Weighted Raw Weighted

mmarried -.5953009 -.0258113 1.335944 1.021696
mage -.300179 -.0803657 .8818025 .8127244

prenatal1 -.3242695 -.0228922 1.496155 1.034023
fbaby -.1663271 .0221042 .9430944 1.005032
medu -.5474357 -.1373455 .7315846 .4984786

23 / 59



Checking for balance

Standardized differences

Group differences scaled by the average the group variances are
known as known as standardized differences

The raw standardized differences between treatment levels t1 and t0

are

δ(t1, t0) =
µ̂x(t1)− µ̂x(t1)√
σ̂2
x(t1) + σ̂2

x(t0)

where

µ̂x(t) =
1

Nt

N∑
i=1

(ti == t)xi

σ̂x(t) =
1

Nt − 1

N∑
i=1

(ti == t) (xi − µ̂x(t))2
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Checking for balance

IPW standardized differences

If the model for the treatment is correctly specified, the IPW
standardized differences will be zero

The IPW standardized differences between treatment levels t1 and t0

are

δ(t1, t0) =
µ̃x(t1)− µ̃x(t1)√
σ̃2
x(t1) + σ̃2

x(t0)

where

µ̃x(t) =
1

Mt

N∑
i=1

ωi (ti == t)xi

σ̃x(t) =
1

Mt − 1

N∑
i=1

(ti == t)ωi (xi − µ̃x(t))2

and ωi are the normalized predicted treatment probabilities and
Mt =

∑N
i=1(t1 == t)ωi
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Checking for balance

Test for balance

Imai and Ratkovic (2014) derived a test for balance by viewing the
restrictions imposed by balance as overidentifying conditions.

Scores for ML estimator of propensity score are moment conditions
Moment conditions for equality of means are over-identifing conditions
Estimate over-identified parameters by generalized method of moments
(GMM)
Under the null of covariate balance GMM criterion statistic has χ2(J)
distribution, where J is the number of over-identifying moment
conditions imposed by covariate balance
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Checking for balance

. quietly teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby medu)
>
. tebalance overid
Iteration 0: criterion = .01513068
Iteration 1: criterion = .01514951 (backed up)
Iteration 2: criterion = .01521006
Iteration 3: criterion = .01539644
Iteration 4: criterion = .01542377
Iteration 5: criterion = .01550797
Iteration 6: criterion = .01553409
Iteration 7: criterion = .01558564
Iteration 8: criterion = .01568553
Iteration 9: criterion = .01569184
Iteration 10: criterion = .01572741
Iteration 11: criterion = .01573404
Iteration 12: criterion = .01573406
Overidentification test for covariate balance

H0: Covariates are balanced:
chi2(6) = 62.5564
Prob > chi2 = 0.0000

Reject null hypothesis that IPW model/weights balance covariates
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Model selection

Model selection

How to selection the model for the outcome or the treatment?

Use theory to decide the set of covariates

Do not condition on variables that are affected by the treatment,
Wooldridge (2005)

What functional form of a set or super set of the correct covariates
should I use?
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Model selection

Minimizing an information criterion

The idea is to fit a bunch of models and select the model with
smallest information criterion

An information criterion is -LL + penalty term

The better the estimator fits the data, the smaller is the negative of
the log-likelihood (-LL)
The more parameters are added to the model, the larger is the penalty
term

Choosing the model that minimizes an information criteria has a long
history in statistics and econometrics

Claeskens and Hjort (2008), (Cameron and Trivedi, 2005, Section
8.5.1)
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Model selection

Minimizing an information criterion

Minimizing the Bayesian information criterion (BIC) can be a
consistent model selection technique

Selecting the model that minimizes the BIC is an estimator of which
model to select
The model selected by this estimator converges to the true model as
the sample size gets larger
BIC = −2LL + 2 ln(N)q, where N is the sample size and q is the
number of parameters

Minimizing the Akaike information criterion (AIC) tends to select a
model with too many terms

The model selected by this estimator converges to a model that over
fits as the sample size gets larger
AIC = −2LL + 2q
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Model selection

bfit does model selection

bfit is a user written command documented in Cattaneo, Drukker,
and Holland (2013)

bfit will find the model that minimizes either the BIC or the AIC

within a subset of all possible models
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Model selection

. bfit logit mbsmoke mmarried mage prenatal1 fbaby medu

bfit logit results sorted by bic
-----------------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC
-------------+---------------------------------------------------------------

_bfit_32 | 4642 -2230.748 -2002.985 9 4023.97 4081.956
_bfit_30 | 4642 -2230.748 -2012.263 7 4038.525 4083.626
_bfit_31 | 4642 -2230.748 -2008.151 8 4032.302 4083.845
_bfit_33 | 4642 -2230.748 -1995.658 12 4015.316 4092.631
_bfit_34 | 4642 -2230.748 -1989.613 18 4015.225 4131.197
_bfit_19 | 4642 -2230.748 -2033.762 8 4083.524 4135.067
_bfit_18 | 4642 -2230.748 -2040.745 7 4095.49 4140.591

[Output Omitted]

_bfit_15 | 4642 -2230.748 -2133.02 4 4274.041 4299.812
_bfit_22 | 4642 -2230.748 -2130.327 5 4270.653 4302.868
_bfit_8 | 4642 -2230.748 -2138.799 3 4283.598 4302.926
_bfit_1 | 4642 -2230.748 -2200.161 2 4404.322 4417.207

-----------------------------------------------------------------------------
Note: N= used in calculating BIC

(results _bfit_32 are active now)

. display "`r(bvlist)´"
i.(mmarried prenatal1 fbaby) mage medu c.mage#c.mage c.mage#c.medu c.medu#c.medu
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Model selection

Over-identification test with selected model

. teffects ipw (bweight) (mbsmoke i.(mmarried prenatal1 fbaby) mage medu ///
> c.mage#c.mage c.mage#c.medu c.medu#c.medu), nolog
Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit

Robust
bweight Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
mbsmoke
(smoker

vs
nonsmoker) -220.7592 28.47705 -7.75 0.000 -276.5732 -164.9452

POmean
mbsmoke

nonsmoker 3403.625 9.544666 356.60 0.000 3384.917 3422.332

. tebalance overid, nolog
Overidentification test for covariate balance

H0: Covariates are balanced:
chi2(9) = 9.38347
Prob > chi2 = 0.4027
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Survival-time data

Survival-time example

Does smoking decrease the time to a second heart attack in the
population of men aged 45–55 who have had one heart attack?

1 For ethical reasons, these data will be observational.

2 This question is about the time to an event, and such data are
commonly known as survival-time data or time-to-event data. These
data are nonnegative and, frequently, right-censored.

3 Many researchers and practitioners want an effect estimate in
easy-to-understand units of time.
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Survival-time data

Much of the survival-time literature uses a hazard ratio as the effect of
interest. The ATE has three advantages over the hazard ratio as an effect
measure.

1 The ATE measures the effect in the same time units as the outcome
instead of in relative conditional probabilities.

2 The ATE is much easier to explain to nontechnical audiences.

3 The models used to estimate the ATE can be much more flexible.

Hazard ratios are useful for population effects when they are constant,
which occurs when the treatment enters linearly and the distribution
of the outcome has a proportional-hazards form.

Neither linearity in treatment nor proportional-hazards form is
required for the ATE, and neither is imposed on the models fit by the
estimators implemented in stteffects.
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Survival-time data

Estimators in stteffects
Regression adjustment (RA)

Model outcome
Treatment assignment is handled by estimating seperate models for
each treatment level
Censoring handled in log-likelihood function for outcome

Inverse-probability weighting

Model treatment assignment
Outcome is not modeled; estimated is weighted average of observed
outcomes
Censoring handled my modeling time to censoring, which must be
random

Inverse-probability weighted regression adjustment (IPWRA)

Model outcome and treatment
Censoring handled in one of two ways

Censoring handled in log-likelihood function for outcome, or
Censoring handled my modeling time to censoring, which must be
random

stteffects is new Stata 14
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Survival-time data

stset the data

. use sheart
(Time to second heart attack (fictional))
. stset atime, failure(fail)

failure event: fail != 0 & fail < .
obs. time interval: (0, atime]
exit on or before: failure

2000 total observations
0 exclusions

2000 observations remaining, representing
1208 failures in single-record/single-failure data

3795.226 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 34.17743

1,208 of the 2,000 observations record actual time to a second heart
attack; remainder were censored
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Survival-time data

stteffects ra

. stteffects ra (age exercise diet education) (smoke)
failure _d: fail

analysis time _t: atime
Iteration 0: EE criterion = 1.525e-19
Iteration 1: EE criterion = 3.127e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.956657 .3331787 -5.87 0.000 -2.609676 -1.303639

POmean
smoke

Nonsmoker 4.243974 .2620538 16.20 0.000 3.730358 4.75759

The time to second heart attack is 1.96 years sooner when all the
men smoke instead of when none of them smoke
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Survival-time data

stteffects ipw

. stteffects ipw (smoke age exercise diet education) ///
> (age exercise diet education)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 3.796e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.187297 .6319837 -3.46 0.001 -3.425962 -.9486314

POmean
smoke

Nonsmoker 4.225331 .517501 8.16 0.000 3.211047 5.239614
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Survival-time data

stteffects ipwra: likelihood adjustment for censoring

. stteffects ipwra (age exercise diet education) ///
> (smoke age exercise diet education)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 2.153e-16
Iteration 1: EE criterion = 9.051e-30
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.592494 .4872777 -3.27 0.001 -2.54754 -.637447

POmean
smoke

Nonsmoker 4.214523 .2600165 16.21 0.000 3.7049 4.724146
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Survival-time data

stteffects ipwra: Weighted adjustment for censoring

. stteffects ipwra (age exercise diet education) ///
> (smoke age exercise diet education) ///
> (age exercise diet)

failure _d: fail
analysis time _t: atime

Iteration 0: EE criterion = 1.632e-16
Iteration 1: EE criterion = 9.890e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: Weibull

Robust
_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.037944 .6032549 -3.38 0.001 -3.220302 -.855586

POmean
smoke

Nonsmoker 4.14284 .4811052 8.61 0.000 3.199891 5.085789
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Endogenous treatment effects

Endogenous treatment effects

Allow an unobserved component to affect treatment assignment and
each potential outcome

Violates CMI even though covariates are unrelated to error terms

View the estimators implemented in eteffects as extentions to RA

for a type of endogenous treatment

eteffects is new to Stata 14
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Endogenous treatment effects

Endogenous treatment effects

Here are the equations, when the outcome is linear

y0 = xβ0 + ε0 + γ0ν

y1 = xβ1 + ε1 + γ1ν

t = (zα + ν > 0)

y = ty1 + (1− t)y0

x and z are unrelated to ν and ε

ν ∼ N(0, 1)

The endogeneity is caused by the presence of ν in all the equations
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Endogenous treatment effects

Endogenous treatment effects: Method

Estimate probit of treatment on z, and get residuals ν̂

Regress y on x and ν̂, when t==0 to get µ̂0i = Ê[y0|xi , νi ]
Regress y on x and ν̂, when t==1 to get µ̂1i = Ê[y1|xi , νi ]
ATE is average of µ̂1i − µ̂0i

Correct standard errors by stacking the moment conditions
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Endogenous treatment effects

RA estimates

. use pschool

. teffects aipw (gpa hgpa pedu) (private i.religious pincome i.squality)
Iteration 0: EE criterion = 2.190e-15
Iteration 1: EE criterion = 8.081e-27
Treatment-effects estimation Number of obs = 10,000
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: logit

Robust
gpa Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
private

(Yes vs No) .5856043 .0071606 81.78 0.000 .5715697 .5996389

POmean
private

No 3.114636 .003141 991.60 0.000 3.10848 3.120792
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Endogenous treatment effects

eteffects estimates

. eteffects (gpa hgpa pedu) (private i.religious pincome i.squality)
Iteration 0: EE criterion = 2.029e-22
Iteration 1: EE criterion = 1.040e-31
Endogenous treatment-effects estimation Number of obs = 10,000
Outcome model : linear
Treatment model: probit

Robust
gpa Coef. Std. Err. z P>|z| [95% Conf. Interval]

ATE
private

(Yes vs No) .1295686 .0225492 5.75 0.000 .0853729 .1737642

POmean
private

No 3.181094 .0048958 649.75 0.000 3.171498 3.19069
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Endogenous treatment effects

Testing for endogeneity

There is no endogeneity if the coefficients on the control term, the
generalized residuals, are zero

A Wald test that these coefficients are jointly zero is a test of the null
hypothesis of no endogeneity
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Endogenous treatment effects

Testing for endogeneity

. estat endogenous
Test of endogeneity
Ho: treatment and outcome unobservables are uncorrelated

chi2( 2) = 418.18
Prob > chi2 = 0.0000
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Endogenous treatment effects

Other functional forms

Outcome model in eteffects could be fractional, probit, or
exponential-mean, in addition to linear
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Endogenous treatment effects

Now what?

Go to http://www.stata.com/manuals14/te.pdf entry teffects

intro advanced for more information and lots of links to literature
and examples
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Quantile treatment effects (QTE)

QTEs for survival data

Imagine a study that followed middle-aged men for two years after
suffering a heart attack

Does exercise affect the time to a second heart attack?
Some observations on the time to second heart attack are censored
Observational data implies that treatment allocation depends on
covariates
We use a model for the outcome to adjust for this dependence
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Quantile treatment effects (QTE)

QTEs for survival data

Exercise could help individuals with relatively strong hearts but not
help those with weak hearts

For each treatment level, a strong-heart individual is in the .75
quantile of the marginal, over the covariates, distribution of time to
second heart attack

QTE(.75) is difference in .75 marginal quantiles

Weak-heart individual would be in the .25 quantile of the marginal
distribution for each treatment level

QTE(.25) is difference in .25 marginal quantiles

our story indicates that the QTE(.75) should be significantly larger
that the QTE(.25)
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Quantile treatment effects (QTE)

What are QTEs?

CDF of yexercise →

← CDF of ynoexercise

q Ex
(.2

)
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1
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Quantile treatment effects (QTE)

Quantile Treatment effects

We can easily estimate the marginal quantiles, but estimating the
quantile of the differences is harder

We need a rank preserveration assumption to ensure that quantile of
the differences is the difference in the quantiles

The τ(th) quantile of y1 minus the τ(th) quantile of y0 is not the same
as the τ(th) quantile of (y1 − y0) unless we impose a rank-preservation
assumption
Rank preservation means that the random shocks that affect the
treated and the not-treated potential outcomes do not change the rank
of the individuals in the population

The rank of an individual in y1 is the same as the rank of that
individual in y0

Graphically, the horizontal lines must intersect the CDFs “at the same
individual”
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Quantile treatment effects (QTE)

A regression-adjustment estimator for QTEs

Estimate the θ1 parameters of F (y |x, t = 1,θ1) the CDF conditional
on covariates and conditional on treatment level

Conditional independence implies that this conditional on treatment
level CDF estimates the CDF of the treated potential outcome

Similarly, estimate the θ0 parameters of F (y |x, t = 0,θ0)

At the point y ,

1/N
N∑
i=1

F (y |xi , θ̂1)

estimates the marginal distribution of the treated potential outcome

The q̂1,.75 that solves

1/N
N∑
i=1

F (q̂1,.75|xi , θ̂1) = .75

estimates the .75 marginal quantile for the treated potential outcome
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Quantile treatment effects (QTE)

A regression-adjustment estimator for QTEs

The q̂0,.75 that solves

1/N
N∑
i=1

F (q̂0,.75|xi , θ̂0) = .75

estimates the .75 marginal quantile for the control potential outcome

q̂1(.75)− q̂0(.75) consistently estimates QTE(.75)

See Drukker (2014) for details
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Quantile treatment effects (QTE)

mqgamma example

mqgamma is a user-written command documented in Drukker (2014)

. ssc install mqgamma

. use exercise, clear

. mqgamma t active, treat(exercise) fail(fail) lns(health) quantile(.25 .75)
Iteration 0: EE criterion = .7032254
Iteration 1: EE criterion = .05262105
Iteration 2: EE criterion = .00028553
Iteration 3: EE criterion = 6.892e-07
Iteration 4: EE criterion = 4.706e-12
Iteration 5: EE criterion = 1.604e-22
Gamma marginal quantile estimation Number of obs = 2000

Robust
t Coef. Std. Err. z P>|z| [95% Conf. Interval]

q25_0
_cons .2151604 .0159611 13.48 0.000 .1838771 .2464436

q25_1
_cons .2612655 .0249856 10.46 0.000 .2122946 .3102364

q75_0
_cons 1.591147 .0725607 21.93 0.000 1.44893 1.733363

q75_1
_cons 2.510068 .1349917 18.59 0.000 2.245489 2.774647
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Quantile treatment effects (QTE)

mqgamma example

. nlcom (_b[q25_1:_cons] - _b[q25_0:_cons]) ///
> (_b[q75_1:_cons] - _b[q75_0:_cons])

_nl_1: _b[q25_1:_cons] - _b[q25_0:_cons]
_nl_2: _b[q75_1:_cons] - _b[q75_0:_cons]

t Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .0461051 .0295846 1.56 0.119 -.0118796 .1040899
_nl_2 .9189214 .1529012 6.01 0.000 .6192405 1.218602
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Quantile treatment effects (QTE)

poparms also estimates QTEs

poparms is a user-written command documented in Cattaneo,
Drukker, and Holland (2013)

poparms estimates mean and quantiles of the potential-outcome
distributions

poparms implements an IPW and an AIPW derived in Cattaneo (2010)
Cattaneo (2010) and Cattaneo, Drukker, and Holland (2013) call the
AIPW estimator an efficient-influence function (EIF) estimator because
EIF theory is what produces the augmentation term
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