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. *mean of Y in f0

. mean y

Mean estimation Number of obs = 500

--------------------------------------------------------------
| Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
y | 181.7257 1.892362 178.0077 185.4437

--------------------------------------------------------------

. *weighted mean of Y using w

. qui svyset id [pw=w]

. svy: mean y
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 1 Number of obs = 500
Number of PSUs = 500 Population size = 500

Design df = 499

--------------------------------------------------------------
| Linearized
| Mean Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
y | 157.3507 21.34233 115.4188 199.2826

--------------------------------------------------------------



. *check weights

. summ w, detail

w
-------------------------------------------------------------

Percentiles Smallest
1% 0 0
5% 0 0

10% 0 0 Obs 500
25% 0 0 Sum of Wgt. 500

50% 0 Mean 1
Largest Std. Dev. 12.14537

75% 0 27.62159
90% 0 65.71575 Variance 147.51
95% 4.22e-21 163.1522 Skewness 14.48649
99% 19.60755 204.0528 Kurtosis 222.3649



Objective

1. We have ideal probability weights, wid .

2. The weighted estimate has large variance.

3. We estimate the weights closest to wid within a variance constraint.

We propose a general method to estimate optimal weights based on the
solution of a nonlinear constrained optimization problem.



Introduction

In statistics, probability-weighted (PW) methods are commonly used to

I compensate for nonresponse,

I control for disproportional sampling fractions,

I balance covariate patterns, etc.

However, these methods behave poorly when PWs are highly variable,
causing biased estimates and high standard errors.
In survey literature, several techniques have been proposed to address this
issue, commonly known as

I weight trimming (truncation) [4] and

I weight smoothing techniques ([5], [1]).

Additionally, within the class of doubly-robust methods [6], new estima-
tors have been proposed to address highly variable weights and models
misspecifications yielding to an improved performance (e.g. [7]).

Nonetheless, these methods lack of objective criteria.



The general nonlinear constrained optimization problem
(NLOP)

Let p be a vector of parameters in Rk , then we consider (NLOP) in the
form

minimize
p∈Rk

f (p)

subject to gi (p) ≤ 0, i ∈ I, I ∪ ε = {1, . . . ,m}
hi (p) = 0, i ∈ ε, I ∩ ε = ∅
p ≥ 0

(NLOP)

where f : Rk 7→ R , g : Rk 7→ Rm and h : Rk 7→ Rn, and where p ≥ 0 are
k bound constraints. To solve (NLOP) we used the method of sequential
quadratic programming (SQP). To fix ideas, SQP method essentially find
an optimal solution p∗ to (NLOP) solving a sequence of sub-quadratic
problems that are local approximations to (NLOP) [3].



Find optimal PWs solving (NLOP)

Let f (P,Y ) = θw be the estimator we are interested in (e.g. the weighted
mean or the weighted total) and define Var(θw ) = σ2

w its variance. Let σ̂2
w

be an unbiased estimator of σ2
w , and let nk ∈ RK be a vector containing

the size of each covariate pattern. We formulate our (NLOP) in order
to minimize the distance (or divergence) between the ideal PWs and the
vector of parameters p subject to

I a inequality constraint of σ̂2
w ;

I an equality constraint on the sum of the PWs and

I k bound constraints to ensure positivity of the PWs.



Find optimal PWs solving (NLOP)

Formally, we define (NLOP1) in the form

minimize
p∈Rk

d(p,wid)

subject to σ̂2
w − α ≤ 0

nkTp− n = 0

p ≥ 0

(NLOP1)

where, d(p,wid) = d(wid,p) =
∑K

k (pk − wid,k)2 is the Euclidian distance
squared. (NLOP1) is a convex problem.



Simulation

To examine the performance of our proposed method we simulated n = 200
data from two Normal distributions, one for the random variable X ∼
N (40, 2), and one for the outcome Y ∼ N (4x+20, 100) and we compared
the weighted estimator at a specific value x of the random variable X
derived by using

I the optimal PWs obtained by solving (NLOP1) for different levels of
α;

I the trimmed PWs at the 90th percentile and

I the ideal PWs.

We chose the weighted mean µw as the estimator we are interested in.
The α levels were set equal to

I α = Var(µ0) where the variance of the weighted mean equals the
variance of the sampled mean;

I α = Var(µtrim), where µtrim is the trimmed mean, and

I α = Var(µid) where µid is the ideal weighted mean.

Finally, we chose x = 35, and f1(X ) ∼ N (35, 2).
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Figure: Comparison of weighted means: (a) α = Var(µ0); (b) α = Var(µtrim) ;
(c) α = Var(µid) ; (d) weighted means with relative confidence intervals.



Real data application

We applied our method on the evaluation of the heterogeneity of the mean
CD4 cell count after 24 months of study across percentiles of

I age at baseline,

I CD4 cell count at baseline.

A randomized clinical trial about the impact of peer-support on virological
failure and mortality in Vietnam [2] was used for the analyses.



/******************************************************************************/
* f0
/******************************************************************************/

/*kernel density estimation for each rv of interest*/

kdensity CD4_BL, nograph at(CD4_BL) gen(fc)
kdensity age_in_study, nograph at(age_in_study) gen(fa)

/*f0 becomes the product of the two (i am assuming them indp)*/
gen f0 = fc*fa

/******************************************************************************/
* f1
/******************************************************************************/
/*CD4 */
_pctile CD4_BL , p(30)
gen xc = CD4_BL-r(r1)
gen f1c = normalden(xc/8)/8

/*age_in_study*/
matrix res[‘k’,2] = ‘j’
gen xa = age_in_study-‘j’
gen f1a = normalden(xa/.5)/.5

gen f1 = f1c*f1a



/******************************************************************************/
* weights
/******************************************************************************/
/*ideal_weight*/
gen ideal_weight = f1 / f0
summ ideal_weight, detail
replace ideal_weight = ideal_weight / r(mean)

/******************************************************************************/
* set up
/******************************************************************************/

/*set up the dataset*/
*sum
bysort CD4_BL age_in_study: egen Sum = sum(CD4_24m)
*sum2
gen cd4_2 = CD4_24m^2
bysort CD4_BL age_in_study: egen Sum2 = sum(cd4_2)
*NK
bysort CD4_BL age_in_study: egen NK = count(CD4_24m)
*iterations
gen maxite = 1000
*init
gen init = 1/N
*alpha level
qui mean CD4_24m
matrix a = e(V)
gen alpha = a[1,1]



/******************************************************************************/
* optimize
/******************************************************************************/

*set the wrapper
program nlopt, plugin using("C:ado\personal\slsqp.dll")

*solve the problem
plugin call nlopt init ideal_weight Sum Sum2 NK alpha N maxite opt_w

---------- Iteration = 1
f(x) = 11011.19487
h(x) = -153
g(x) = 4.504653475e-06

...

...

...

---------- Iteration = 1000
f(x) = 48.43127702
h(x) = 1.705302566e-13
g(x) = 2.020914849e-07
nlopt ok!



Results
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Results

f age µi se(µi ) lb ub d(p,wid)
Treated
f0 32 425.96104 17.924854 390.54887 461.37321 0
f26 26 435.40811 17.924855 399.99595 470.82028 .00062383
f32 32 188.58567 17.924853 153.17351 223.99784 50.416523
f35 35 225.58382 17.924853 190.17166 260.99599 8.0331154
f38 38 257.941 17.924852 222.52884 293.35317 48.431286
Untreated
f0 31 397.57746 18.365707 361.26972 433.88521 0
f26 26 220.89805 18.365708 184.5903 257.2058 198.80678
f31 31 283.33135 18.365706 247.0236 319.63909 91.749512
f32 32 286.54874 18.365707 250.24099 322.85648 .22424519
f33 33 311.334 18.365708 275.02626 347.64175 149.49336
f34 34 345.04854 18.365707 308.7408 381.35629 84.547058

Treatment effect among patients with CD4 cell count 31 cells/µL and age 26 years old
is equal to f26,tr − f26,untr = 435.40811 − 220.89805 = 214.51006.

Treatment effect among patients with CD4 cell count 31 cells/µL and age 32 years old
is equal to f32,tr − f32,untr = 188.58567 − 286.54874 = −97.96307.



Conclusions

I PWs are used in many settings;

I PWs can be highly variable;

I ad-hoc or ”rule-of-thumb” methods used to solve the issue of high
variability;

I we proposed a more rigorous method based on the solution of a
NLOP that provides global, optimal solution with a straightforward
practical interpretation.
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