

The use of restricted cubic splines to evaluate nonproportional hazards in Cox regression

Viktor Oskarsson / Andrea Discacciati / Nicola Orsini

Unit of Nutritional Epidemiology and Unit of Biostatistics Institute of Environmental Medicine Karolinska Institutet

2015 Nordic and Baltic Stata Users Group meeting

2015-09-04

Viktor Oskarsson

Introduction I Cox regression

- Cox regression is the most common regression method for time-to-event data
- An exposure-outcome association is normally quantified into a single hazard ratio (HR)
- A single HR is only meaningful under proportional hazards (PHs)

IMM

Introduction II

Common approaches to evaluate non-PHs (in Stata)

Graphically

- sts graph
- stphplot
- stcoxkm
- Numerically
 - estat phtest
 - , tvc(varname)

Introduction III

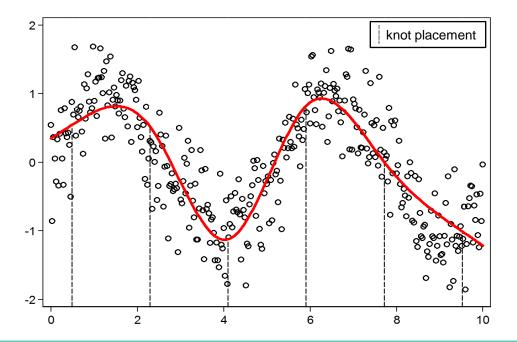
Common approaches to handle non-PHs (in Stata)

Piecewise models

- stsplit
- , tvc(varname)
- Stratified models
 - , strata(varname)

Introduction III

Common approaches to handle non-PHs (in Stata)


Piecewise models

- stsplit
- , tvc(varname)
- Stratified models
 - , strata(varname)
- Flexible functions
 - Restricted cubic splines (RCS)
 - Fractional polynomials

Introduction IV Cubic splines

- Cubic splines are piecewise-polynomial line segments joined together at knots
- RCS are constrained to be linear before the first knot and/or after the final knot

Aim of the presentation

- Introduce how RCS can be used in the evaluation of non-PHs in Cox regression
- Present a new Stata postestimation command (stphcoxrcs) that greatly facilitates such an evaluation (both numerically and graphically)
- Show a practical example of how to evaluate non-PHs using stphcoxrcs

How to use RCS in the evaluation of non-PHs I Preestimation

- First, the analysis time (_t) is split into narrow intervals (using stsplit)
- Second, a flexible function of _t is modeled with RCS (using mkspline)
- Third, an interaction is formed between the flexible function of _t and the covariate of interest

Splitting of _*t*

Before splitting

idkod	_d	_t0	_t
23011236	1	74.318256	76.538714

After splitting

idkod	_d	_t0	_t
23011236	0	74.318256	74.5
23011236	0	74.5	75
23011236	0	75	75.5
23011236	0	75.5	76
23011236	0	76	76.5
23011236	1	76.5	76.538714

How to use RCS in the evaluation of non-PHs I Preestimation (cont.)

- First, the analysis time (_t) is split into narrow intervals (using stsplit)
- Second, a flexible function of _t is modeled with RCS (using mkspline)
- Third, an interaction is formed between the flexible function of _t and the covariate of interest

How to use RCS in the evaluation of non-PHs II Estimation

A full Cox model is fitted (including the aforementioned interaction terms) (using stcox)

 $\lambda(t \mid \mathbf{X}) = \lambda_0(t) \exp(\beta_1 \mathbf{X} + \beta_2 \mathbf{X} \times \mathbf{S}_1(t) + \beta_3 \mathbf{X} \times \mathbf{S}_2(t))$

How to use RCS in the evaluation of non-PHs III Postestimation

 A joint test of the interaction terms is performed to numerically evaluate non-PHs

 $H_0:\beta_2=\beta_3=0$

• A graph of the time-varying HRs is created to graphically evaluate non-PHs

 $HR(t) = \exp(\beta_1 + \beta_2 \times S_1(t) + \beta_3 \times S_2(t))$

stphcoxrcs

stphcoxrcs tests the PH-assumption for a covariate (binary or continuous) using RCS after fitting a model with stcox

- _t is split using stsplit with the options splitevery(#) |
 splitat(numlist). Default is splitat(failures)
- The natural logarithm of _t is modeled with RCS using mkspline with the option nknots(#). Default is nknots(3)

Practical example I Setting and research question

- Data from a prospective cohort of Swedish women (n = 32,038; followed-up between 1998-2011)
- Cox regression on the association of fruit and vegetable consumption with risk of symptomatic gallstone disease (n = 1120)
- Fruit and vegetable consumption categorized into quartiles of consumption (abbreviated as "fv_cat" in subsequent slides)

Practical example II Cox regression

- stset
 - Attained age as time scale
- stcox
 - Multivariable-adjusted for potential confounders (omitted from output for clarity)

_t	Haz. Ratio	Std. Err.	Z	₽> z	[95% Conf.	Interval]
fv_cat						
2	0.96	0.08	-0.47	0.6388	0.81	1.14
3	0.93	0.08	-0.81	0.4194	0.78	1.11
4	0.97	0.09	-0.33	0.7388	0.81	1.16

Practical example II Cox regression (cont.)

- stset
 - Attained age as time scale
- stcox
 - Multivariable-adjusted for potential confounders (omitted from output for clarity)
 - Postestimation: estat phtest, detail

	rho	chi2	df	Prob>chi2
1b.fv_cat			1	
2.fv_cat	0.01749	0.34	1	0.5603
3.fv_cat	0.01998	0.44	1	0.5074
4.fv_cat	0.07726	6.65	1	0.0099

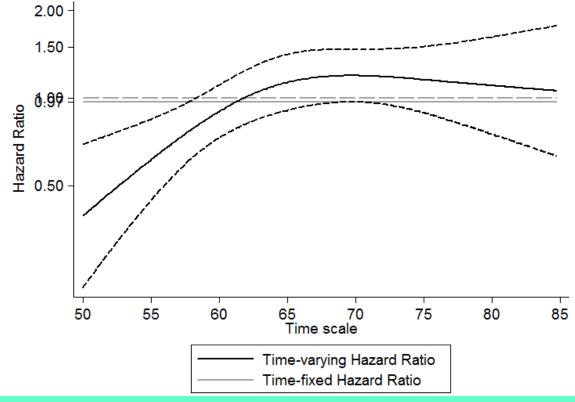
Practical example III

Evaluation of non-PHs using stphcoxrcs—test statistics

stphcoxrcs 4.fv_cat

Wald test of proportional-hazards assumption for i4.fv_cat

chi2(2) = 12.29 Prob > chi2 = 0.0021


Note: time scale modeled using Restricted Cubic Splines with 3 knots

Practical example IV

Evaluation of non-PHs using stphcoxrcs—graphics

stphcoxrcs 4.fv_cat

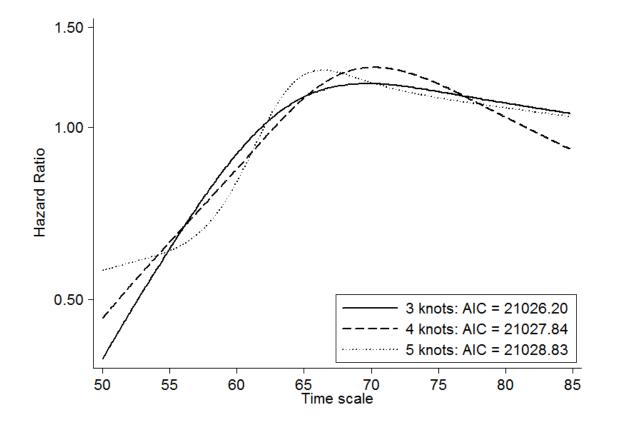
Viktor Oskarsson

Practical example V

Evaluation of non-PHs using stphcoxrcs—options

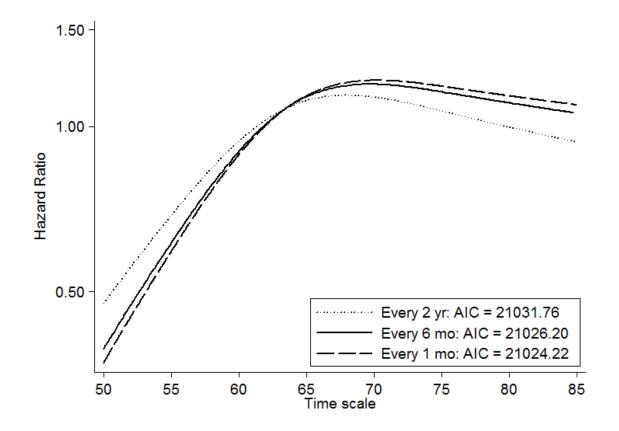
- Main
 - nknots(#)
 - splitevery(#)
 - splitat(numlist)
- Test statistics
 - ic
 - Irtest

Practical example V


Evaluation of non-PHs using stphcoxrcs—options (cont.)

- Graphics
 - level(#)
 - range(# #)
 - noci
 - noyref
 - nograph
 - gopts(twoway_options)
 - saving(filename [, replace])

Practical example VI

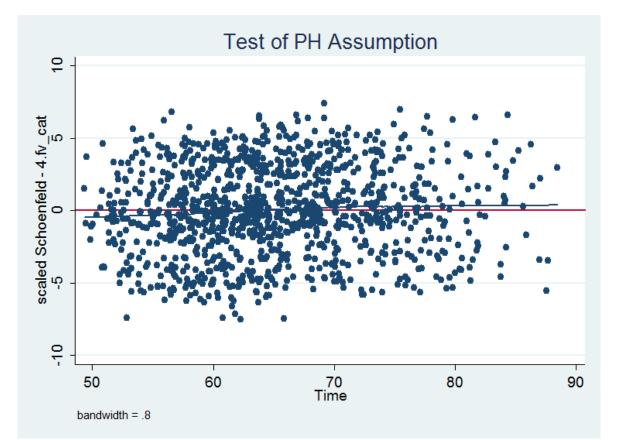

Comparison of Cox models with different number of RCS-knots using stphcoxrcs

Practical example VII

Comparison of Cox models with different intervals of _t using stphcoxrcs

Summary

- In Cox regression, the assessment of PHs is important for the interpretation of HRs and exposure-outcome associations
- stphcoxrcs facilitates the use of RCS in the evaluation of non-PHs (both numerically and graphically)
- It is a useful complement to other approaches that are used to evaluate and/or handle non-PHs


References

- Heinzl, H., & Kaider, A. (1997). Gaining more flexibility in Cox proportional hazards regression models with cubic spline functions. Computer methods and programs in biomedicine, 54(3), 201-208.
- Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data: extending the Cox model. Springer-Verlag. New York.
- Royston, P., & Lambert, P. C. (2011). Flexible parametric survival analysis using Stata: beyond the Cox model. Stata Press books.

Practical example II Cox regression (cont.)

Viktor Oskarsson