Estimating compound expectation in a regression framework with the new cereg command

2015 Nordic and Baltic Stata Users Group meeting

Celia García-Pareja Matteo Bottai

Unit of Biostatistics, IMM, KI

September 4th, 2015
Statistics is about summarizing information contained in observed data.

- The most informative, representative and precise the summary is, the better.
- Typical summary measures to provide are, for example, the sample mean and the quantiles.

Question

Which summary measure is more "suitable"? How precise is the information it provides?
Simulated data on 450 observations drawn from a chi square with 4 d.f.

```
. sqreg c, q(0.1 0.25 0.5 0.75 0.9) reps(200)
```

| t | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----|--------|-----------|------|------|----------------------|
| q10 | _cons | 1.166131 | .0805198 | 14.48 | 0.000 | 1.007888 | 1.324373 |
| q25 | _cons | 2.055943 | .1183237 | 17.38 | 0.000 | 1.823406 | 2.28848 |
| q50 | _cons | 3.603483 | .1191959 | 30.23 | 0.000 | 3.369232 | 3.837734 |
| q75 | _cons | 5.423563 | .1963908 | 27.62 | 0.000 | 5.037604 | 5.809522 |
| q90 | _cons | 7.642251 | .343475 | 22.25 | 0.000 | 6.967232 | 8.317269 |

```
. regress t
```

| t | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----|--------|-----------|------|------|----------------------|
| _cons | 4.077057 | .1276203 | 31.95 | 0.000 | 3.826249 | 4.327864 |

Remarks

- Quantiles provide information about the whole distribution whereas the mean just refers to the mass center.
- Estimation of low quantiles is more precise than that of high quantiles.
- Inference on the mean is better than in high quantiles but worse than in low quantiles.
Motivating example II

Chi-squared distribution with 4 df
Mean vs quantiles

The mean...
- Summarizes the data in a single number and it is easy to interpret.
- Its inference is extremely sensitive to the presence of outliers.
- Is informative just in case there is little variability in the data.

Quantiles...
- Provide a detailed picture of the underlying statistical distribution.
- Can be estimated with high precision in regions with high density of data.
- Provide information about single points of the distribution.
Mean vs quantiles

The mean...

- Summarizes the data in a single number and it is easy to interpret.
- Its inference is extremely sensitive to the presence of outliers.
- Is informative just in case there is little variability in the data.

Quantiles...

- Provide a detailed picture of the underlying statistical distribution.
- Can be estimated with high precision in regions with high density of data.
- Provide information about single points of the distribution.

Proposal

- Combine both summary measures providing a bridge between mean and quantiles.
The conditional expectation of Y can be written in terms of its quantile function as

$$
\mu(x) = E[Y|x] = \int_{-\infty}^{\infty} y dF_Y(y|x) = \int_0^1 Q_Y(p|x) dp.
$$

Given a set of specified proportions $\{0, \lambda_1, \lambda_2, \ldots, \lambda_{K-1}, 1\}$, we split $\mu(x)$ into components

$$
\mu(x) = \int_0^{\lambda_1} Q_Y(p|x) dp + \int_{\lambda_1}^{\lambda_2} Q_Y(p|x) dp + \ldots + \int_{\lambda_{K-1}}^{1} Q_Y(p|x) dp.
$$

Each component $\mu_k(x) = \int_{\lambda_{k-1}}^{\lambda_k} Q_Y(p|x) dp$ measures the contribution of a fraction of the population to $\mu(x)$.
We might also calculate the expectation of every k-th component

$$\bar{\mu}_k(x) = \frac{\mu_k(x)}{\lambda_k - \lambda_{k-1}}.$$

$\mu(x)$ can be then expressed as a weighted average of these expectations

$$\mu(x) = \sum_{k=1}^{K} (\lambda_k - \lambda_{k-1}) \bar{\mu}_k(x).$$

Special interest application settings

Distributions with large variability:
- The mean is not representative and the quantiles might be insufficient.

Censored data:
- Lack of information in the upper tail: the components can be computed up to the last observed quantile.
Suppose that the conditional quantile function can be estimated as a linear combination of a set of covariates of interest:

\[
\hat{Q}_Y(p|x) = \hat{\beta}_0 p + \hat{\beta}_1 p x_1 + \ldots + \hat{\beta}_s p x_s = \sum_{j=0}^{s} \hat{\beta}_j p x_j.
\]

Every component \(\hat{\mu}_k(x)\) can be expressed as

\[
\hat{\mu}_k(x) = \int_{\lambda_{k-1}}^{\lambda_k} \hat{Q}_Y(p|x) dp = \int_{\lambda_{k-1}}^{\lambda_k} \sum_{j=0}^{s} \hat{\beta}_j p x_j dp = \sum_{j=0}^{s} \left(\int_{\lambda_{k-1}}^{\lambda_k} \hat{\beta}_j dp \right) x_j = \sum_{j=0}^{s} \hat{B}_{jk} x_j.
\]

Therefore, \(\hat{B}_{jk}\) is the effect of the \(j\)-th covariate in the \(k\)-th component.
347 patients with metastatic renal carcinoma.

Patients randomly assigned to either subcutaneous interferon-α (IFN) or oral medroxyprogesterone acetate (MPA).

After the total follow-up time, 322 patients had died and the censoring rate was 7.2%.
Results I: components vs the overall mean

```
.cereg days trt, f(died) c(0.01 0.25 0.5 0.6 0.7 0.85 0.99) reps(50)
```

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------------|---------|-----------|-------|-------|---------------------|
| q1_25 | | | | | |
| trt | 4.782 | 12.349 | 0.39 | 0.699 | -19.4211 |
| _cons | 10.143 | 21.436 | 0.47 | 0.636 | -31.8718 |
| q25_50 | | | | | |
| trt | 18.510 | 11.624 | 1.59 | 0.111 | -4.27217 |
| _cons | 33.186 | 16.401 | 2.02 | 0.043 | 1.039758 |
| q50_60 | | | | | |
| trt | 10.101 | 4.666 | 2.16 | 0.030 | .9554328 |
| _cons | 23.398 | 3.993 | 5.86 | 0.000 | 15.57202 |
| q60_70 | | | | | |
| trt | 9.887 | 4.607 | 2.15 | 0.032 | .857183 |
| _cons | 32.785 | 2.641 | 12.42 | 0.000 | 27.60935 |
| q70_85 | | | | | |
| trt | 25.600 | 10.484 | 2.44 | 0.015 | 5.05103 |
| _cons | 79.523 | 8.404 | 9.46 | 0.000 | 63.05146 |
| q85_99 | | | | | |
| trt | 56.322 | 20.616 | 2.73 | 0.006 | 15.91619 |
| _cons | 145.135 | 31.291 | 4.64 | 0.000 | 83.80616 |
```

The overall life expectancy after treatment initiation for those who had MPA was 324.17 days and for those who had IFN was 449.34 days (125.20 days of difference).
Results II: life expectancy in portions of the population

```
. cereg days trt, f(died) c(0.01 0.25 0.5 0.6 0.7 0.85 0.99) reps(50) means

Compound Expectation regression

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------------|-------|-----------|-------|------|----------------------|
| M1_25 | | | | | |
| trt | 19.92653 | 49.75396 | 0.40 | 0.689| -77.58945 117.4425 |
| _cons | 42.26111 | 105.6167 | 0.40 | 0.689| -164.7439 249.2661 |
| M25_50 | | | | | |
| trt | 74.04115 | 38.8984 | 1.90 | 0.057| -2.198312 150.2806 |
| _cons | 132.7439 | 80.56393 | 1.65 | 0.099| -25.15848 290.6463 |
| M50_60 | | | | | |
| trt | 101.0135 | 36.90469 | 2.74 | 0.006| 28.6816 173.3453 |
| _cons | 233.9756 | 52.19961 | 4.48 | 0.000| 131.6662 336.2849 |
| M60_70 | | | | | |
| trt | 98.86872 | 37.31695 | 2.65 | 0.008| 25.72885 172.0086 |
| _cons | 327.8498 | 34.85833 | 9.41 | 0.000| 259.5288 396.1709 |
| M70_85 | | | | | |
| trt | 170.6656 | 83.89101 | 2.03 | 0.042| 6.242284 335.089 |
| _cons | 530.1587 | 61.65655 | 8.60 | 0.000| 409.3141 651.0033 |
| M85_99 | | | | | |
| trt | 402.2983 | 153.0327 | 2.63 | 0.009| 102.3598 702.2368 |
| _cons | 1036.677 | 275.0323 | 3.77 | 0.000| 497.6235 1575.73 |
```
Conclusions

- The compound expectation is a suitable summary measure in any scenario.
- It can be used in a regression framework and thus, it provides information about the effect of a set of covariates of interest.
- It represents a useful tool for groups comparison.
- In the presence of censoring, it can be computed up to the last observed quantile, avoiding extrapolation.

Further work:
- Optimize the components’ width for every specific case, in order to achieve better inferences.
Thank you for your attention.