Flexible parametric survival models on the log hazard scale: The strcs command

Hannah Bower*

Michael J. Crowther and Paul C. Lambert

*Department of Medical Epidemiology and Biostatistics Karolinska Institutet. Sweden

Nordic and Baltic Stata Users Group meeting, 4th September 2015

Outline

- Introduction
- Plexible parametric survival models
- The strcs command
- 4 Examples
- Conclusions
- 6 References

Introduction

- ▶ Cox is the most widely used survival model [Cox, 1972]
- Parametric models are also implemented frequently, flexible parametric survival models are becoming more popular [Royston and Lambert, 2011]
- stgenreg fits parametric models with user-defined hazards
 [Crowther and Lambert, 2013]
- strcs is an extension to stgenreg when one wants to model the hazard function using restricted cubic splines

- Flexible parametric survival models (FPSMs) use restricted cubic splines (RCS) to model some form of the hazard function
- RCS are piecewise cubic polynomials joined together at points called knots
 - Continuous 1st, and 2nd derivatives at the knots, linear before first and after last knot
- RCS are able to capture complex hazard functions which standard parametric models may struggle to capture

- ▶ We usually fit FPSMs on the log cumulative hazard scale
- FPSM on the log cumulative hazard scale can be written as:

$$ln(H(t; \mathbf{x})) = \underbrace{s(ln(t); \gamma_0)}_{+} + \underbrace{\mathbf{x}\beta}_{+}$$

- We usually fit FPSMs on the log cumulative hazard scale
- FPSM on the log cumulative hazard scale can be written as:

$$ln(H(t; \mathbf{x})) = \underbrace{s(ln(t); \gamma_0)}_{\text{spline function}} + \widehat{\mathbf{x}\beta}$$

- ▶ We usually fit FPSMs on the log cumulative hazard scale
- FPSM on the log cumulative hazard scale can be written as:

$$ln(H(t; \mathbf{x})) = \underbrace{s(ln(t); \gamma_0)}_{\text{spline function}} + \underbrace{\mathbf{x}\beta}_{\text{covariates}}$$

- ▶ We usually fit FPSMs on the log cumulative hazard scale
- FPSM on the log cumulative hazard scale can be written as:

$$\ln(H(t; \mathbf{x})) = \underbrace{s(\ln(t); \gamma_0)}_{\text{spline function}} + \underbrace{x\beta}_{\text{time-dependent effects}} + \underbrace{\sum_{k=1}^{D} s(\ln(t); \gamma_k) x_k}_{\text{time-dependent effects}}$$

- stpm2 fits FPSMs on the log cumulative hazard scale in Stata [Lambert and Royston, 2009]
- Cumulative hazard shape is easier to capture
- It is computationally intensive to fit models on the log hazard scale
- However, we have problems when we have multiple time-dependent effects on the log cumulative hazard scale

The problem with multiple time-dependent effects

- ▶ 14,423 women diagnosed with breast cancer in England and Wales [Coleman et al., 1999]
 - ▶ young: <50 years or 80+ years at diagnosis
 - affluent: least deprived or most deprived
- Fit a FPSM on the log cumulative hazard scale with time-dependent effects for deprivation and age at diagnosis
 - No interaction between deprivation and age
- Predict the hazard ratio for age in each of the deprivation levels

The problem with multiple time-dependent effects

The log hazard scale

▶ Non-proportional FPSM on the log hazard scale:

$$\ln(h(t; \mathbf{x})) = \underbrace{s(\ln(t); \gamma_0)}_{\text{spline function}} + \underbrace{\sum_{k=1}^{D} s(\ln(t); \gamma_k) \mathbf{x}_k}_{\text{time-dependent effects}}$$

The log hazard scale

▶ Non-proportional FPSM on the log hazard scale:

$$\ln(\mathbf{h}(t; \mathbf{x})) = \underbrace{s(\ln(t); \gamma_0)}_{\text{spline function}} + \underbrace{\sum_{k=1}^{D} s(\ln(t); \gamma_k) \mathbf{x}_k}_{\text{time-dependent effects}}$$

Maximum likelihood estimation

Log-likelihood

$$\log L_i = d_i \log\{h(t_i)\} - H(t_i)$$

- \rightarrow d_i = event indicator
- \blacktriangleright $h(t_i)$ = hazard function
- \vdash $H(t_i)$ = cumulative hazard function

$$H(t_i) = \int_0^t h(u_i) du$$

Maximum likelihood estimation

Log-likelihood

$$\log L_i = d_i \log\{h(t_i)\} - H(t_i)$$

- FPSMs on the log cumulative hazard: analytically differentiate to get hazard function
- ► FPSMs on the log hazard scale: numerical integration required to get cumulative hazard function

Gaussian quadrature

Gaussian quadrature converts an integral of some hazard function h(x) into a weighted summation over a set of pre-defined points known as nodes

$$\int_{t_0}^t h(z)dz \approx \frac{t - t_0}{2} \sum_{j=1}^m w_j h(\frac{t - t_0}{2} z_j + \frac{t_0 + t}{2})$$
 (1)

where m and z_j represent the number of nodes and the node locations, respectively.

The strcs command

- strcs is a Stata command which fits FPSMs on the log hazard scale
- ► Integration of the hazard is performed in two steps [Crowther and Lambert, 2014]:
 - Analytical integration before the first, and after the last knot
 - Gauss-Legendre quadrature numerical integration in between the first and last knot
- This reduces the number of nodes required and thus the computational intensity
- stgenreg performs numerical integration over the whole function since it is a general tool

The strcs command

- strcs is a Stata command which fits FPSMs on the log hazard scale
- ► Integration of the hazard is performed in two steps [Crowther and Lambert, 2014]:
 - Analytical integration before the first, and after the last knot
 - Gauss-Legendre quadrature numerical integration in between the first and last knot
- This reduces the number of nodes required and thus the computational intensity
- stgenreg performs numerical integration over the whole function since it is a general tool

strcs Syntax

```
strcs [varlist], df (#) [tvc(varlist)...]
```

- df(#) defines degrees of freedom for baseline
- tvc(varlist) defines covariates with time-dependent effects
- dftvc(df_list) defines the degrees of freedom of time-dependent effects
- nodes(#) defines the number of nodes used within numerical integration
- bhazard(varname) invokes relative survival models
- Other options: smooth baseline hazard over time, specify knot positions, ...

Example: Proportional hazards model

. strcs affluent young, df(3)

Log likelihood = -17610.978					Number of obs =		14423
		Haz. Ratio				[95% Conf.	Interval]
хb		I					
	affluent	.8412791	.0216063	-6.73	0.000	.7999797	.8847108
	young	.2357943	.0060132	-56.65	0.000	.2242983	.2478795
rc	s	I					
	s1	I2417658	.0140943	-17.15	0.000	26939	2141415
	s2	0837641	.0122397	-6.84	0.000	1077536	0597747
	s3	.0106206	.0113675	0.93	0.350	0116593	.0329006
	_cons	-1.149726	.0300179	-38.30	0.000	-1.20856	-1.090892

Example: Non-proportional hazards model

. strcs affluent young, df(3) tvc(affluent young) dftvc(3)

= -17387.46	Number	of obs =	14423		
Haz. Ratio	Std. Err.	z	P> z	[95% Conf.	Interval]
.9231825	.0447397	-1.65	0.099	.8395299	1.01517
. 1899977	.0089422	-35.29	0.000	. 1732554	.2083579
3222852	.0257495	-12.52	0.000	3727533	2718171
1464735	.0227574	-6.44	0.000	1910771	1018699
1021786	.0206593	-4.95	0.000	14267	0616872
.0862308	.0294077	2.93	0.003	.0285927	.1438688
0418096	.0257252	-1.63	0.104	0922301	.0086109
0196183	.0237653	-0.83	0.409	0661974	.0269608
.2162942	.034253	6.31	0.000	.1491596	. 2834288
.2530733	.028519	8.87	0.000	.1971771	.3089694
.2960521	.0248382	11.92	0.000	.2473702	.3447341
-1.1463	.0438901	-26.12	0.000	-1.232323	-1.060277
			Haz. Ratio Std. Err. z .9231825 .0447397 -1.65 .1899977 .0089422 -35.29 3222852 .0257495 -12.521464735 .0227574 -6.441021786 .0206593 -4.95 .0862308 .0294077 2.930418096 .0257252 -1.630196183 .0237653 -0.83 .2162942 .034253 6.31 .2530733 .028519 8.87 .2960521 .0248382 11.92 -1.1463 .0438901 -26.12	Haz. Ratio Std. Err. z P> z .9231825 .0447397 -1.65 0.099 .1899977 .0089422 -35.29 0.000 3222852 .0257495 -12.52 0.000 1464735 .0227574 -6.44 0.0001021786 .0206593 -4.95 0.000 .0862308 .0294077 2.93 0.0030418096 .0257252 -1.63 0.1040196183 .0237653 -0.83 0.409 .2162942 .034253 6.31 0.000 .2530733 .028519 8.87 0.000 .2960521 .0248382 11.92 0.000 -1.1463 .0438901 -26.12 0.000	Haz. Ratio Std. Err. z P> z [95% Conf. .9231825 .0447397 -1.65 0.099 .8395299 .1899977 .0089422 -35.29 0.000 .1732554 3222852 .0257495 -12.52 0.00037275331464735 .0227574 -6.44 0.00019107711021786 .0206593 -4.95 0.00014267 .0862308 .0294077 2.93 0.003 .02859270418096 .0257252 -1.63 0.10409223010196183 .0237653 -0.83 0.4090661974 .2162942 .034253 6.31 0.000 .1491596 .2530733 .028519 8.87 0.000 .1971771 .2960521 .0248382 11.92 0.000 .2473702

Example: Non-proportional hazards model

- . predict hr_affluent, hrnumerator(affluent 1) hrdenominator(affluent 0) ci
- . predict hr_young, hrnumerator(young 1) hrdenominator(young 0) ci

Other post-estimation predictions

- Survival function
- Differences in survival functions between groups
- Hazard function
- Differences in hazard functions between groups
- Cumulative hazard function

Conclusions

- Fitting FPSMs on the log hazard scale using strcs is an alternative to fitting FPSMs on the log cumulative hazard scale
- ► Use strcs if you have many time-dependent effects and wish to present HRs for covariates
- ► The need for numerical integration slows things down
- Nodes may need to be increased, may need sensitivity analyses
- Require fewer nodes than stgenreg due to two-step integration process

References I

[Coleman et al., 1999] Coleman, M. P., Babb, P., Damiecki, P., Grosclaude, P., Honjo, S., Jones, J., Knerer, G., Pitard, A., Quinn, M., Sloggett, A., and De Stavola, B. (1999).

Cancer Survival Trends in England and Wales, 1971-1995: Deprivation and NHS Region.

Number 61 in Studies in Medical and Population Subjects. London: The Stationery Office.

[Cox, 1972] Cox, D. R. (1972).

Regression models and life-tables (with discussion).

JRSSB, 34:187-220.

[Crowther and Lambert, 2013] Crowther, M. J. and Lambert, P. C. (2013).

stgenreg: A stata package for general parametric survival analysis.

Journal of Statistical Software, 53:1-17.

[Crowther and Lambert, 2014] Crowther, M. J. and Lambert, P. C. (2014).

A general framework for parametric survival analysis.

Stat Med. 33(30):5280-5297.

[Lambert and Royston, 2009] Lambert, P. C. and Royston, P. (2009).

Further development of flexible parametric models for survival analysis. The Stata Journal, 9:265–290.

[Royston and Lambert, 2011] Royston, P. and Lambert, P. C. (2011).

Flexible parametric survival analysis in Stata: Beyond the Cox model.

Stata Press.