The Hierarchy of Factor Invariance

Phil Ender

UCLA IDRE Statistical Consulting Group

2013 Stata Conference New Orleans

July 19, 2013

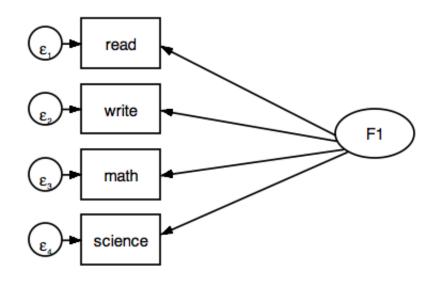
Apologia

This presentation is in html because it was too difficult to fit all of the CFA output onto traditional slides. And, yes, there is probably too much output shown.

Introduction

Whenever researchers conduct confirmatory factor analysis with multiple groups, the issue of factor or measurement invariance comes up.

At its most basic level, factor invariance is whether the factors in each group are measuring the same thing. There are a number of ways in which invariance can be assessed. The table below presents the hierarchy of factor invariance in ordered by the number of constraints placed on the model, running from the fewest to the most constraints. The constraints are cumulative through the hierarchy.


The Hierarchy of Factor Invariance

```
    Configurational(Dimensional) Invariance -- equal number of factors
    Metric (Pattern) Invariance -- equal loadings
    Strong (Scalar) Invariance -- equal intercepts
    Strict Invariance -- equal residuals
    Strict Invariance + Equal Factor Means
    Strict Invariance + Equal Factor Means & Factor Variances
```

The Data

use http://www.ats.ucla.edu/stat/data/hsbdemo,clear

The dataset contains four indicator variables (read, write, math & science) that we will use in our single-factor model. The diagram for a single-group model looks like this:

We will use female (0=male, 1=female) as the multiple-group indicator.

Configurational (Dimensional) Invariance

Configurational or dimensional factor invariance implies that the number of factors are the same within each group. One way we can verify this is by running separate PCAs for each group.

```
. pca read write math science if female==0
```

```
. pca read write math science if female==1
```

```
[Edited Output}
```

Component	Male Eigenvalues	Female Eigenvalues +	
Comp1	2.88982	2.95214	
Comp2	.409958	.421286	
Comp3	.375182	.3516	
Comp4	.325036	.274972	

From the eigenvalues it seems rather clear that there is only one factor within each group. This is not a big surprise since each of the indicators are normed test scores in each of four academic areas.

Separate CFAs for each group

Before continuing on with the hierarchy of factor invariance, it is a good idea to run a CFA separately for each group to see if there are any problems estimating the models. The results for this step will be the same as the multiple-group analysis with all parameters allowed to vary freely and, as such, serves as a check that the multiple-group analysis is coded correctly.

For identification purposes **sem** will fix the loading of the first indicator to one. Additionally, we will also set the intercept and the residual variance for the first indicator to zero in to assist in estimating (identifying) the factor mean.

```
. sem (F1 -> read write math science) ///
```

```
(read <- F1@1 _cons@0) if female==0, ///
mean(F1) variance(e.read@0)
. sem (F1 -> read write math science) ///
  (read <- F1@1 _cons@0) if female==1, ///
  mean(F1) variance(e.read@0)</pre>
```

```
[Edited Output]
```

	Males		Females
	Coef.	OIM Std. Err.	OIM Coef. Std. Err.
	COEI. +	Stu. EII.	COEL. Std. EIL.
Measurement			
read <-			
F1	1	(constrained)	1 (constrained)
_cons	0	(constrained)	0 (constrained)
	+ 		
F1	.6360156	.0782702	.5021136 .0607196
_cons	16.52388	4.214667	29.01451 3.199544
 math <-	+		+
F1	.5597399	.0765211	.64698 .0612728
_cons	23.37725	4.12048	18.92367 3.228695
science <-	+		+
F1	.6799764	.0799045	.5342854 .0692102
_cons	17.31158	4.30267	23.05656 3.646948
Mean	+		+
F1	52.82418	1.095334	51.73394 .9589364
Variance	+		
e.read	0	(constrained)	0 (constrained)
e.write		9.023252	40.28008 5.456223
e.math	1	8.624466	41.01741 5.556098
e.science	63.43344		52.33273 7.088839
F1	109.1779	16.18561	100.2319 13.57712
	LR chi2(3)	= 31.05	53.48

In general the factor loadings look fairly similar. However, there seems to be variability in some of the intercepts and residual variances.

Model 1: Free All Parameters

We begin by running a two-group model in which all of the parameters are allowed to vary freely. Note the **ginvariant(none)** option. No multiple-group model can fit better than this one. Thus, this model is used to see the effect of constraining the loadings for the metric invariance model.

Exogenous var: Latent: Fitting target	F1					
Iteration 0: Iteration 11:						
Structural equ Grouping varia Estimation met Log likelihood	able = femal thod = ml				obs = groups =	
(2) [var(e (3) [read] (4) [read]	Obn.female#c. .read)]Obn.fe Obn.female = 1.female#c.F1 .read)]1.fema 1.female = 0	male = 0 0 = 1				
		OIM Std. Err.				
Measurement read <- F1 [*]		(constraine				
_cons [*]		(constraine				
	' + 					
F1						
male female _cons	.6360156 .5021136	.0782702 .0607196	8.13 8.27	0.000 0.000	.4826089 .3831054	
male	16.52388 29.01451	3.199544	9.07	0.000	8.263282 22.74352	24.78447 35.2855
 math <- F1	+ 					
male			7.31		.4097614	
female cons	.64698	.0612728	10.56	0.000	.5268875	.7670724
_ male			5.67		15.30126	
female	18.92367	3.228694	5.86	0.000	12.59555	25.25179
science <- F1						
male female	.6799764 .5342854		8.51 7.72	0.000 0.000	.5233665 .3986359	.8365863 .669935
_cons		4 20267	4 0 2	0 000	0 0705	25 74466
male female		4.30267 3.646948	4.02 6.32		8.8785 15.90867	25.74466 30.20444
 Mean F1	+ 					
male	52.82418	1.095334			50.67736	54.97099
female	51.73394	.9589366	53.95	0.000	49.85446	53.61343
Variance e.read [*]	0	(constraine				

e.write							
male	60.86516	9.023252		45.51748	81.38779		
female	40.28008	5.456223		30.88795	52.5281		
e.math							
male	58.17521	8.624466		43.50583	77.79084		
female	41.01738	5.556092		31.45334	53.48958		
e.science							
male	63.43344	9.403998		47.43815	84.82205		
female	52.33273	7.088839		40.13027	68.2456		
F1							
male	109.1779	16.18561		81.64773	145.9907		
female	100.232	13.57713		76.86081	130.7096		
Note: [*] identifies parameter estimates constrained to be equal across groups.							
LR test of mod	del vs. satura	ated: chi2(6)	= 84.53, F	rob > chi2 =	0.0000		

Once again, you can visually compare the loadings, intercepts and residual variances between males and females.

Model 2: Metric Invariance (loadings invariant)

We check the metric or pattern invariance by constraining the loadings (path coefficients) to be equal across groups. We use the **ginvariant(mcoef)** option to do this. In the code below, **mcoef** stands for the measurement coefficient, i.e., the factor loading.

```
. sem (F1 -> read write math science)
                                    111
     (F1 -> read@1)
                                    /// /* set loading to 1 in both groups */
                                   /// /* set intercept to 0 in both groups */
     (read <- F1 cons@0),
                                   /// /* multiple-group analysis */
     group(female)
                                    /// /* hold loadings equal */
     ginvariant(mcoef)
                                     /// /* estimate factor means */
     mean(F1)
     variance(e.read@0)
                                         /* fixed residual at 0 */
Endogenous variables
Measurement: read write math science
Exogenous variables
Latent:
           F1
Fitting target model:
Iteration 0: log likelihood = -25597.924
Iteration 10: log likelihood = -2782.2219
                                            Number of obs
                                                                     200
Structural equation model
                                                            =
Grouping variable = female
                                            Number of groups
                                                              =
                                                                       2
Estimation method = ml
Log likelihood
                 = -2782.2219
      [read]0bn.female#c.F1 = 1
 (1)
      [write]0bn.female#c.F1 - [write]1.female#c.F1 = 0
 (2)
      [math]0bn.female#c.F1 - [math]1.female#c.F1 = 0
 (3)
      [science]Obn.female#c.F1 - [science]1.female#c.F1 = 0
 (4)
      [var(e.read)]0bn.female = 0
 (5)
 (6)
      [read]0bn.female = 0
 (7)
      [read]1.female#c.F1 = 1
 ( 8) [var(e.read)]1.female = 0
 ( 9) [read]1.female = 0
```

	Coef.	OIM Std. Err.	Z	P> z	[95% Conf.	Interval
+∙ Measurement						
read <-						
F1						
[*]	1	(constraine	d)			
_cons	0	(-1.			
[*] ++-	0	(constraine	a) 			
write <-						
F1						
[*]	.5522246	.0485991	11.36	0.000	.4569722	.647476
_cons				0 000	15 66622	26 222
male female	20.95007	2.587114	10 21	0.000	15.66623 21.35142	
+						
math <-						
F1	6100405	040100	10 74		5106500	70700/
[*]	.6129485	.048102	12./4	0.000	.5186703	./0/226
_cons male	20 56656	2 664416	7 72	0 000	15.3444	25 7887
female	20.68425	2.563209	8.07	0.000	15.66045	
+						
science <-						
F1	5065752	.0530537	11 24	0 000	.4925918	700550
[*] _cons	.5905755	.0530537	11.24	0.000	.4925916	.700556
_cons male	21.71717	2,925668	7.42	0.000	15.98297	27.4513
female	19.83406		7.00	0.000		25.3835
+.						
Mean F1						
male	52.82417	1.095333	48.23	0.000	50.67736	54.9709
female				0.000	49.85449	53.6134
+ Variance						
e.read						
[*]	0	(constraine	d)			
e.write	-	(
male	61.63169	9.180054			46.0275	82.5259
female	40.53178	5.511979			31.04841	52.9117
e.math						
male	58.48431	8.688283			43.71062	78.2513
female	41.13349	5.581478			31.52786	53.6656
e.science male	64.19285	9.5655			47.93442	85.9658
female	52.7216	7.172172			40.38242	68.8311
F1	52.7210	, • 1 / 2 1 / 2			10.00212	00.0011
male	109.1777	16.18554			81.64762	145.990
female	100.2313	13.57695			76.86044	130.708
Note: [*] iden	tifies param	eter estimat	es consti	rained to	be equal acr	OSS
groups.						

We won't compare compare the chi-square and degrees of freedom to the previous model just yet. We will wait until after we run the models for the other forms of factor invariance.

Model 3: Strong Invariance (metric invariance plus equal intercepts)

As we step through each of the levels of invariance, we retain the constraints from the previous model and add an additional constraint. For strong or scalar invariance we add the constraint that the intercepts to are equal across groups. In the code below, **mcons** stands for the measurement constant, i.e., the intercept.

```
. sem (F1 -> read write math science) ///
    (F1 -> read@1) /// /* set loadings to 1 in both groups */
    (read <- F1_cons@0), /// /* set intercept to 0 in both groups */
    group(female) ///
    ginvariant(mcoef mcons) ///
    mean(F1) variance(e.read@0)
[Output Redacted]
LR test of model vs. saturated: chi2(12) = 118.27, Prob > chi2 = 0.0000
```

Model 4: Strict Invariance (strong invariance plus equal residuals)

For strict invariance, we add the constraint that the residual variances are to be equal across groups. We do not need to use the **ginvariant** option because constraing the residual variances to be equal implies the the loadings and intercepts are also equal.

```
. sem (F1 -> read write math science) ///
    (F1 -> read@1) /// /* set loadings to 1 in both groups */
    (read <- F1 _cons@0), /// /* set intercept to 0 in both groups */
    group(female) ///
    var(e.read@0) var(e.write@v2) /// /* set residuals to be equal */
    var(e.math@v3) var(e.science@v4) /// /* set residuals to be equal */
    mean(F1)
[Output Redacted]
LR test of model vs. saturated: chi2(15) = 128.03, Prob > chi2 = 0.0000
```

Model 5: Strict Invariance Plus Factor Means

Next, we constrain the factor means to be equal across groups in addition to all previous constraints.

```
. sem (F1 -> read write math science) ///
    (F1 -> read@1) /// /* set loadings to 1 in both groups */
    (read <- F1 _cons@0), /// /* set intercept to 0 in both groups */
    group(female) ///
    var(e.read@0) var(e.write@v2) ///
    var(e.math@v3) var(e.science@v4) ///
    mean(F1@m1) /* set factor means to be equal */
[Output Redacted]
LR test of model vs. saturated: chi2(16) = 128.59, Prob > chi2 = 0.0000
```

Model 6: Strict Invariance Plus Factor Means & Factor Variances

Add one last constraint to our list: Equal factor variances.

```
. sem (F1 -> read write math science)
                                         111
      (0: F1 -> read@1)
                                         /// /* set loading to 1 in group 0 */
      (1: F1 -> read@1)
                                         /// /* set loading to 1 in group 1 */
      (read <- F1 _cons@0),
                                         /// /* set intercept to 0 in both groups */
                                         /// /* multiple-group analysis
      group(female)
                                                                           */
      var(e.read@0) var(e.write@v2)
                                         /// /* set residuals to be equal */
      var(e.math@v3) var(e.science@v4)
                                         /// /* set residuals to be equal */
                                         /// /* set factor variances to be equal */
      var(F1@v5)
                                              /* set factor means to be equal */
     mean(F1@m1)
[Ouput Redacted]
LR test of model vs. saturated: chi2(17) = 128.77, Prob > chi2 = 0.0000
```

Summary Table

For the purposes of this presentation, we are just going to look at the chi-square values and degrees of freedom for each model. In actual practice, we would want to also look at measures like RMSEA and CFI.

We start off by comparing the metric invariance model to the one in which all parameters are free to vary. The metric invariance model does not fit significantly worse. However, when we compare the strong invariance with metric invariance, the fit does become significantly worse. Even though we didn't meet the strong factor invariance level, we show how the remaining comparisons are computed.

			ref	delta	delta	
model	chi2	df	model	chi2	df	Р
Model 1 free all parameters	84.53	6	_			
Model 2 metric (loadings)	89.02	9	1	4.49	3	.2132
Model 3 strong (intercepts)	118.27	12	2	29.25	3	.0000
Model 4 strict (residuals)	128.03	15	3	9.76	3	.0207
Model 5 plus factor means	128.59	16	4	.56	1	.4543
Model 6 plus factor var	128.77	17	5	.18	1	.6714

Partial Strong Invariance

We did not achieve full strong factor invariance. However, inspection of the model with all parameters free to vary suggests that the problem may lie with the intercepts for the variable write. Let's try a model with partial strong invariance, in which, the intercepts for math and science are constrained to be equal but are allowed to vary for write.

```
sem (F1 -> read write math science) ///
                                          /* set loadings to 1 in both groups
                                                                                    */
    (F1 \rightarrow read@1)
                                    111
    (read <- F1 _cons@0)
                                    111
                                          /* set intercept to 0 in both groups
                                                                                    */
    (0: write <- F1 _cons@i1)
                                          /* allow intercepts for write to differ */
                                     111
                                          /* allow intercepts for write to differ */
    (1: write <- F1 _cons@i2),</pre>
                                     111
    group(female)
                                     111
    ginvariant(mcoef mcons)
                                     111
                                          /* set residual to 0
    variance(e.read@0)
                                     111
                                                                    */
                                          /* estimate factor means */
    mean(F1)
```

[Output Redacted]

Partial Strict Invariance

If we free the residual variances for write, we get a model for partial strict invariance.

```
sem (F1 -> read write math science) ///
                                         /* set loadings to 1 in both groups */
    (0: F1 -> read@1)
                                     111
    (1: F1 -> read@1)
                                    111
    (read <- F1 _cons@0)
                                     /// /* set intercept to 0 in both groups */
    (0: write <- F1 _cons@i1)
                                     111
                                          /* allow intercepts for write to differ */
    (1: write <- F1 _cons@i2),</pre>
                                          /* allow intercepts for write to differ */
                                     111
    group(female)
                                     111
    ginvariant(mcoef mcons)
                                     111
    variance(e.read@0)
                                     111
                                          /* set residual to 0 */
    var(e.math@v3) var(e.science@v4) ///
   mean(F1)
[Output Redacted]
LR test of model vs. saturated: chi2(13) = 96.03, Prob > chi2 = 0.0000
```

Now that the intercepts and residual variances for write are allowed to vary across groups, we can run models constrain factor means and factor variances to be equal (code not shown). Here is the summary table for the partial invariance models.

Revised Summary Table for Partial Invariance

			ref	delta	delta	
model	chi2	df	model	chi2	df	Р
1 free all parameters	84.53	6	-			
2 metric (loadings)	89.02	9	1	4.49	3	.2132
3 partial strong	91.99	11	2	2.97	2	.2265
4 partial strict	96.03	13	3	4.04	2	.1327
5 plus factor means	96.59	14	4	.53	1	.4666
6 plus factor var	96.77	15	5	.21	1	.6468

You will note that model 6 (partial strict plus factor means and variances) does not fit significantly worse than model 1 (all parameters free).

8jun13