Implementing the Oaxaca-Choe decomposition method in Stata

Alfonso Miranda (CIDE)

(alfonso.miranda@cide.edu)

CAlfonso Miranda (p. 1 of 18)

Introduction

Oaxaca, R. (1973) and Blinder, A. S. (1973) describe methods that the aim is to uncover what proportion of the log-wage gap between two groups, say men and women, is explained by differences in observable characteristics across groups (also known as the 'E' part) and what proportion of the gap is left 'unexplained' once the effect of observables is netted out via regression analysis (also known as the 'U' part).

- he work of Oaxaca and Choe (2016) extends the usual toolkit in two important directions:
 - (a) To take into account that the two groups may have different degrees of labour market attachment that contribute to the observed wage gap;
 - (b) To take into account the role of unobserved heterogeneity at the panel level.

Some detail

- Oaxaca-Choe decomposition involves fitting Wooldridge (1995)'s correlated random effects (Heckman) sample selection estimator for each compared group, v.g. men and women, to get coefficients on:
 - (a) time-varying controls;
 - (b) time-fixed controls;
 - (iii) inverse Mills ratio terms.

for decomposing the wage-gap into its Explained, Unexplained, and Selection components.

Wooldridge's CRE (Heckman) sample selection estimator

Consider fitting the following system for pooled cross-section data with i = 1, ..., N individuals and t = 1, ..., T periods

$$logw_{it}^* = \mathbf{x}_{it}\beta + \mathbf{w}_i\gamma + \delta_t + c_i + u_{it}$$
(A.1)

$$S_{it}^* = \mathbf{z}_{it}\pi_1 + \mathbf{w}_i\pi_2 + \alpha_t + c_i + v_{it}$$
(A.2)

$$S_{it} = 1 \left(S_{it}^* > 0 \right)$$
 (A.3)

$$logw_{it} = \begin{cases} logw_{it}^* \text{ if } S_{it} = 1\\ \text{missing otherwise.} \end{cases}$$
(A.4)

conditional on c_i , all control variables are exogenous and $\epsilon_{it}^s = c_i + v_{it}$, with $\epsilon_{it}^s \sim \mathcal{N}(0, 1)$. Define $\epsilon_{it}^{logw} = c_i + u_{it}$. Sample selection bias arises whenever $E(\epsilon_{it}^{logw} | \epsilon_{it}^s) \neq 0$.

- Under this model a straightforward extension of the two-step Heckman model is not available because ϵ_{imt}^{s} depends on the whole history of selection $S_{im} = \{S_{im1}, S_{im2}, \ldots, S_{imT}\}$. This is an important complication.
- ► Use a CRE approach as a way of dealing with the dependency of e^s_{imt} on the whole history of selection.
- ► Fitt equation S by probit for each t to get a predicted inverse Mills ratio Â_{imt}. Then, in a second step, fit the regression of

*logw*_{it} on
$$\mathbf{x}_{it}, \bar{\mathbf{x}}_{it}, \mathbf{w}_i, d2_t \mathbf{w}_i, \dots, dT_t \mathbf{w}_i, \widehat{\lambda}_{it}, d2_t \widehat{\lambda}_{it}, \dots, dT_t \widehat{\lambda}_{it}$$

by POLS in the selected sample.

Because we have a two-step estimator, to get valid standard errors it is important to take into account the variation of first stage parameters. Bootstrapping the standard errors is a popular choice.

Defining E, U, and S in the panel context

- Method 1 The 'explained part' is anything due to differences in characteristics and the 'unexplained part' is anything due to differences in parameters. Differences in c_i and selection are split into their E and U components.
- Method 2 Consider differences in coefficients on $\hat{\lambda}_{it}$ in the second stage as Explained or non discriminatory. That is, given observed characteristics and coefficients in the logit model for $\hat{\lambda}_{it}$, the correlation between *S* and *logw* is considered as explained. Differences in c_i and $\hat{\lambda}_{it}$ are split into their E and U components.
- Method 3 Define the selection component S as containing only differences in coefficients on $\hat{\lambda}_{it}$ in the second stage. Differences in c_i and $\hat{\lambda}_{it}$ are split into their E and U components.

Method 4 Define S as anything affecting differences in selection:

- (i) differences in coefficients on $\hat{\lambda}_{it}$ in the second stage,
- (ii) differences in characteristics that enter the probit model for $\widehat{\lambda}_{it}$,
- (iii) differences in coefficients in the probit model for $\hat{\lambda}_{it}$.
- The E part contains differences in time-varying and time-fixed characteristics that affects log-wage (including those affecting c_i).
- ► The U part contains differences in coefficients on time-varying and time-fixed characteristics that affects log-wage (including those affecting c_i).

Method 5 Define E as:

- (i) differences in time-varying variables,
- (ii) differences in time-fixed variables (including differences time fixed vars that affect c_i),
- (iii) differences in coefficients on $\hat{\lambda}_{it}$ in the second stage,
- (iv) differences in characteristics that enter the probit model for λ_{it} ,
- U contains differences in coefficients in time-varying variables, differences in coefficients in the probit model for $\hat{\lambda}_{it}$.

Method 6 Define E as:

(i) differences in time-varying variables,

- ▶ U contains differences in coefficients in time-varying variables,
- S contains differences in time-fixed variables, differences in coefficients on time-fixed variables, differences in coefficients on λ_{it} in the second stage, differences in characteristics that enter the probit model for λ_{it}, differences in coefficients in the probit model for λ_{it}.

Example with data from the MXFLS Mexican Family Life Survey Home (ENNViH)

. de lincome age female \$educat sel nchild

storage display value variable name type format label variable label _____ lincome float %9.0g log of income per month float %9.0g age age female float %9.0g female noschool float %9.0g No formal schooling preschool float %9.0g Preschool or kinder jrhigh float %9.0g Jr High float %9.0g ojrhigh Open Jr High float %9.0g highsch High School ohighsch float %9.0g Open High School tradesch float %9.0g Trade school college float %9.0g College graduate float %9.0g Graduate float %9.0g Don't know dksch sel float %9.0g Positive income nchild float %9.0g Number of children<6 years old

3

< ロ > < 同 > < 回 > < 回 > < □ > <

. bysort female: su lincome age female \$educat sel nchild

-> female = 0					
Variable	l Obs	Mean	Std. Dev.	Min	Max
	+				
lincome	5,852	10.374	.7293295	8.188689	11.69525
age	8,746	44.16305	10.66742	20	65
female			0	0	0
noschool		.0695175	.2543466	0	1
preschool			.0427349	ō	1
	+				·
jrhigh	8,746	.2492568	.4326075	0	1
ojrhigh	8,746	.0102904	.1009242	0	1
highsch			.3002305	0	1
ohighsch		.0052595	.0723359	0	1
tradesch		.0096044	.0975358	ō	1
	+				
college	8,746	.098788	.2983942	0	1
graduate	8,746	.0059456	.0768824	0	1
dksch	8,746	.0080037	.0891095	0	1
sel	8,746 8,746 8,746	.6691059	.4705619	0	1
nchild		.1808827	.4638866	0	4
-> female = 1 Variable	l Obs	Mean	Std. Dev.	Min	Max
	+				44 00505
lincome		10.10162	.8269909	8.188689	11.69525
age				20	65
female		1	0	1	1
noschool				0	1
preschool	10,618	.0013185	.0362891	0	1
jrhigh	10,618	. 2395931	.4268553	0	1
ojrhigh				ő	1
highsch		.0806178		0	1
ohighsch		.0030138		0	1
			.0548174	0	1
tradesch	10,618	.014127	.1180199	0	1
college	10,618	.0589565	.2355543	0	1
graduate		.002637	.0512867	0	1
dksch		.0065926		0	1
sel		.2367678	.4251186	ō	1
nchild		.1692409	.4509338	0	4
		1		In	In the l
n are i	reiative	IV OLD	er and	nave	highe

CAlfonso Miranda (p. 12 of 18

-> female = 0 Variable	Obs	Mean	Std. Dev.	Min	Max				
lincome	5,852	10.374	.7293295	8.188689	11.69525				
age	5,852	42,83903	10.27546	20	65				
female	5,852	0	0	0	0				
noschool		.0615174	.2402975	0	1				
preschool		.0013671	.0369516	0	1				
jrhigh	5,852	. 265892	.4418448	0	1				
ojrhigh	5,852	.0109364	.1040129	0	1				
highsch	5,852	.1074846	.3097549	0	1				
ohighsch	5,852	.0064935	.0803271	0	1				
tradesch	5,852	.0093985	.0964974	0	1				
college		. 0849282	.2787987	0	1				
graduate	5,852	.0032468	.0568926	0	1				
dksch	5,852	.0046138	.0677739	0	1				
sel	5,852	1	0	1	1				
nchild	5,852	. 1954887	.4818286	0	4				
lincome	2,514	10.10162	.8269909	8.188689	11.69525				
age		42.31424		8.188689	11.69525				
female	2,514	1	0.000000	1	1				
		.0640414		ō	1				
preschool		.0019889	.0445612	0	1				
jrhigh	2,514	. 2728719	.4455242	0	1				
ojrhigh		.0190931	.1368795	ō	1				
highsch		.1165473	.320944	ō	1				
ohighsch		.0067621	.08197	ō	1				
tradesch	2,514	.0286396	.1668246	0	1				
college	2,514	. 1077963	.3101847	0	1				
graduate		.0031822	.0563322	0	1				
dksch	2,514	.0043755	.0660158	0	1				
sel	2,514	1	0	1	1				
nchild	2,514	. 1372315	.4027636	0	4				
it, amon	g tho	se who	o work	, wor	nen h	ave	higher	qualifi	ca
an men							-	∢∄⊁ ∢3	4
an men									- 1

. bysort female: su lincome age female \$educat sel nchild if sel==1

æ

Number of obs = 19,364 Replications = 20

Bootstrap results

(Replications based on 9,682 clusters in pid_link)

	Observed Coef.	Bootstrap Std. Err.	z	P> z		-based Interval]
gap E1 U1 S1 E2 U2 S2	.2723789 03733 .3097089 0 .1991702 .0732087 0	.0185867 .0079794 .0199107 (omitted) .5650059 .5753357 (omitted)	14.65 -4.68 15.55 0.35 0.13	0.000 0.000 0.000 0.724 0.899	.2359496 0529692 .2706846 9082209 -1.054429	.3088083 0216907 .3487332 1.306561 1.200846
E3 E3 U3 S3 E4 U4 S4	03733 .0732087 .2365002 0344269 0715769 .3783828	.0079794 .5753357 .5661459 .00832 .4013026 .3935239	-4.68 0.13 0.42 -4.14 -0.18 0.96	0.000 0.899 0.676 0.000 0.858 0.336	0529692 -1.054429 8731254 0507337 8581155 3929099	0216907 1.200846 1.346126 01812 .7149616 1.149675

Most of the wage-gap is due to differences in selection. And most of the difference in selection is due to differences in coefficients on $\hat{\lambda}_{it}$ in the second stage (that is, given observed characteristics and coefficients in the logit model for $\hat{\lambda}_{it}$, correlation between S and *logw*).

The end, thanks!!

æ

æ

・ロン ・部 と ・ ヨ と ・ ヨ と …

El Centro de Investigación y Docencia Económicas (CIDE) es una institución especializada en investigación y educación superior en el área de Ciencias Sociales. El CIDE forma parte de la red de Centros Públicos del Consejo Nacional de Ciencia y Tecnología (CONACVT).

El CIDE ofrece diez posgrados, todos registrados en el Programa Nacional de Posgrados de Calidad (PNPC):

Programas de tiempo completo: - Doctorados: Políticas Públicas: Ciencia Po

Maestrías: Métodos para el Análisis de Políticas Públicas (en proceso de registro al PNPC): Historia Internacional; Economía; Economía Ambiental; Ciencia Política; Administración y Políticas Públicas

Programas profesionalizantes: - Maestría en Gerencia Pública

Programas vinculados con la Industria: - Maestría en Periodismo sobre Políticas Públicas

Las y los alumnos de la Métodos para el Análisis de Políticas Públicas no pagan colegiatura y son becarlos de CONACYT, por lo que reciben una beca de manutención de aproximadamente \$11,000 pesos (monto estimado 2018).

La fortaleza de nuestros programas académicos se basa en: • Estudiantes de alto rendimiento que pasaron por un exigente y riguro

 Planta académica de alto nivel, experta en los temas que imparte; 95% de la planta cuenta con doctorado y 75% pertenece al Sistema Nacional de Investigadores.

Maestría en Métodos para el Análisis de Políticas Públicas

Es un programa de nueva creación, único en América Latina, que forma profesionistas en el uso riguroso de métodos cuantitativos y cualitativos para el análisis de políticas públicas.

Los estudiantes conocerán el estado del arte en las principales teorías sociales, métodos de análisis y estrategias de recolección de datos en experimentos, estudios observacionales y de caso.

Perfil de ingres

Son bienvenidos profesionistas de cualquier área con interés en aproximarse a los problemas públicos de México y el mundo deside distintas perspectivas y disciplinas. Buscamos aspirantes que desen desarrollar su capacidad analítica, lógica matemática y pensamiento crítico.

Perfil de egreso

Los egresados serán capaces de formular y evaluar políticas pública basadas en evidencia, un perfil que tiene alta demanda en el sector pólítica y en áreas del sector privado vinculadas a la economía de la información Asimismo, nuestro perfil biene alta demanda en los mejores programas de doctorado del mundo.

Profesorado

Los profesores son egresados de los mejores programas doctorales internacionales en ciencias sociales y contribuyen a la investigación de frontera en temas como salud, política de drogas, educación y medio ambiente.

Los estudiantes tendrán la oportunidad de colaborar en proyectos di investigación y aprovechar la riqueza de enfoques metodológicos. En la sede Región Centro encontrará una comunidad vibrante que dialog: sobre los grandes problemas nacionales desde diferentes disciplinas y métodos de amálisis.

References

- Aguilar-Rodriguez, A., Miranda, A., Zhu, Yu. (2018). Decomposing the language pay gap among the indigenous ethnic minorities of Mexico: is it all down to observables? Economics Bulletin 38 (2): 689-695.
- Blinder, A. S. (1973). Wage discrimination: Reduced form and structural estimates, The Journal of Human Resources 8,436–455.
- Heckman, J. J. (1979). Sample Selection Bias as a Specification Error, Econometrica, 47,153–161.
- Jann, B. (2008). The Blinder–Oaxaca decomposition for linear regression models, The Stata Journal 8(4): 453-479.
- Oaxaca, R. (1973). Male-female wage differentials in urban labor markets, International Economic Review 14,693–709.
- Oaxaca, R. and Choe, C. (2016). Wage decompositions using panel data sample selection correction, Korean Economic Review 32, 201–218.
- Wooldridge, J. M. (1995). Selection corrections for panel data models under conditional mean independence assumptions, Journal of Econometrics 68: 115–132.
- Wooldridge, J.M. (2010). Econometric Analysis of Cross Section and Panel Data (2nd edition). The MIT Press.