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Introduction

“Latent class analysis” (LCA) comprises a set of techniques used to
model situations where there are different subgroups of individuals,
and group memebership is not directly observed, for example:.

I Social sciences: a population where different subgroups have
different motivations to drink.

I Medical sciences: using available data to identify subgroups of
risk for diabetes.

I Survival analysis: subgroups that are vulnerable to different
types of risks (competing risks).

I Education: identifying groups of students with different
learning skills.

I Market research: identifying different kinds of consumers.



The scope of the term “latent class analysis” varies widely from
source to source.

Collin and Lanza (2010) discuss some of the models that are
usually considered LCA. Also, they point out: “ In this book, when
we refer to latent class models we mean models in which the latent
variable is categorical and the indicators are treated as categorical”.



In Stata, we use “ LCA” to refer to a wide array of models where
there are two or more unobserved classes

I Dependent variables might follow any of the distributions
supported by gsem, as logistic, Gaussian, Poisson,
multinomial, negative binomial, Weibull, etc.(help gsem
family and link options)

I There might be covariates (categorical or continuos) to explain
the dependent variables

I There might be covariates to explain class membership

Stata adopts a model-based approach to LCA. In this context, we
can see LCA as group analysis where the groups are unknown.

Let’s see an example, first with groups and then with classes:



Below we use group() option fit regressions to the childweight
data, weight vs age, different regressions per sex:
. gsem (weight <- age), group(girl) ginvariant(none) ///
> vsquish nodvheader noheader nolog

Group : boy Number of obs = 100

Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight
age 3.481124 .1987508 17.52 0.000 3.09158 3.870669

_cons 5.438747 .2646575 20.55 0.000 4.920028 5.957466

var(e.weight) 2.4316 .3438802 1.842952 3.208265

Group : girl Number of obs = 98

Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight
age 3.250378 .1606456 20.23 0.000 2.935518 3.565237

_cons 4.955374 .2152251 23.02 0.000 4.533541 5.377207

var(e.weight) 1.560709 .2229585 1.179565 2.06501

Group analysis allows us to make comparisons between these equations, and easily set
some common parameters. (help gsem group options)



Now let’s assume that we have the same data, and we don’t have a
group variable. We suspect that there are two groups that behave
different.

. gsem (weight <- age), lclass(C 2) lcinvariant(none) ///
> vsquish nodvheader noheader nolog

Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.C (base outcome)

2.C
_cons .5070054 .2725872 1.86 0.063 -.0272557 1.041267



Class : 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight
age 5.938576 .2172374 27.34 0.000 5.512798 6.364353

_cons 3.8304 .2198091 17.43 0.000 3.399582 4.261218

var(e.weight) .6766618 .1817454 .3997112 1.145505

Class : 2

Coef. Std. Err. z P>|z| [95% Conf. Interval]

weight
age 2.90492 .2375441 12.23 0.000 2.439342 3.370498

_cons 5.551337 .4567506 12.15 0.000 4.656122 6.446551

var(e.weight) 1.52708 .2679605 1.082678 2.153893



The second table on the LCA model same structure as the output
from the group model.

In addition, the LCA output starts with a table corresponding to
the class estimation. This is a binary (logit) model used to find the
two classes.

In the latent class model all the equations are estimated jointly and
all parameters affect each other, even when we estimate different
parameters per class.

How do we interpret these classes? We need to analyze our classes
and see how they relate to other variables in the data. Also, we
might interpret our classes in terms of a previous theory, provided
that our analysis is in agreement with the theory. We will see
post-estimation commands that implement the usual tools used for
this task.



Let’s compute the class predictions based on the posterior
probability.

. predict postp*, classposteriorpr

. generate pclass = 1 + (postp2>0.5)

. tabulate pclass

pclass Freq. Percent Cum.

1 78 39.39 39.39
2 120 60.61 100.00

Total 198 100.00

. tabulate pclass girl

gender
pclass boy girl Total

1 40 38 78
2 60 60 120

Total 100 98 198



Let’s see some graphs.

. twoway scatter weight age if girl == 0 || ///
> scatter weight age if girl == 1, saving(weighta, replace)
(file weighta.gph saved)

. twoway scatter weight age, saving(weightb, replace)
(file weightb.gph saved)

. graph combine weighta.gph weightb.gph
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. predict mu*, mu

. twoway scatter weight age if pclass ==1 || ///
> scatter weight age if pclass ==2 || ///
> line mu1 age if pclass ==1 || ///
> line mu2 age if pclass ==2 , legend(off)
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gsem did exactly what we asked for: tell me what are the two more
likely groups for two different linear regressions.



This approach allows us to generalize LCA in different directions,
for example, if we had more information:

I we could incorporate more than one equation:
. gsem (weight <- age ) (height <- age ), ///
> lclass(C 3) lcinvariant(none)

I we could incorporate class predictors:
. gsem (weight <- age ) (height <- age ), ///
(C <- diet_quality) lclass(C 2) lcinvariant(none)



Estimation
For a dependent variables y = y1, . . . yn and g groups for a given
observation (i.e. no observation index below), the likelihood is
computed as:

f (y) =

g∑
i=1

πi fi (y|zi ),where :

I zi is the vector of linear forms for class i , i.e., ziji = x′βij ,
where x are the dependent variables, and βij are the
coefficients for main equation j , (conditional on) class i .

I fi is the joint likelihood of y = y1, . . . yn conditional on class i
I the probabilities of belonging to each class πi , i = 1, . . . , g are

computed using a multinomial model,

πi =
exp(γi )∑g

k=1 exp(γk)
.

γk , k = 2, . . . g is the linear form class k in the latent
class equation, γ1 = 1.



Classic LCA Example: Role conflict dataset

This is a classic example of LCA, where researchers use 4 binary
variables to classify a sample.

. use gsem_lca1
(Latent class analysis)

. notes in 1/4

_dta:
1. Data from Samuel A. Stouffer and Jackson Toby, March 1951, "Role conflict

and personality", _The American Journal of Sociology_, vol. 56 no. 5,
395-406.

2. Variables represent responses of students from Harvard and Radcliffe who
were asked how they would respond to four situations. Respondents
selected either a particularistic response (based on obligations to a
friend) or universalistic response (based on obligations to society).

3. Each variable is coded with 0 indicating a particularistic response and 1
indicating a universalistic response.

4. For a full description of the questions, type "notes in 5/8".



. describe

Contains data from gsem_lca1.dta
obs: 216 Latent class analysis

vars: 4 10 Oct 2017 12:46
size: 864 (_dta has notes)

storage display value
variable name type format label variable label

accident byte %9.0g would testify against friend in
accident case

play byte %9.0g would give negative review of
friend´s play

insurance byte %9.0g would disclose health concerns to
friend´s insurance company

stock byte %9.0g would keep company secret from
friend

Sorted by: accident play insurance stock



. list in 120/121

accident play insura~e stock

120. 1 0 1 1
121. 1 1 0 0

For each observation, we have a vector of responses
Y = (Y1,Y2,Y2,Y4) (I am omitting an observation index)
The traditional approach deals with models that involve only
categorical variables, so within each class we have 2n cells with
zeros and ones, and probabilities are estimates nonparametrically.



Stata (Model-based) approach

Now, how do we do it in Stata?

. gsem (accident play insurance stock <- ), ///
> logit lclass(C 2)

We are fitting a logit model for each class, with no covariates.
Because there are no covariates, estimating the constant is
equivalent to estimating the probability: p = F (constant), where F
is the inverse logit function.



. gsem(accident play insurance stock <- ),logit lclass(C 2) ///
> vsquish nodvheader noheader nolog

Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.C (base outcome)

2.C
_cons -.9482041 .2886333 -3.29 0.001 -1.513915 -.3824933

Class : 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

accident
_cons .9128742 .1974695 4.62 0.000 .5258411 1.299907

play
_cons -.7099072 .2249096 -3.16 0.002 -1.150722 -.2690926

insurance
_cons -.6014307 .2123096 -2.83 0.005 -1.01755 -.1853115

stock
_cons -1.880142 .3337665 -5.63 0.000 -2.534312 -1.225972



Coef. Std. Err. z P>|z| [95% Conf. Interval]

Class : 2

Coef. Std. Err. z P>|z| [95% Conf. Interval]

accident
_cons 4.983017 3.745987 1.33 0.183 -2.358982 12.32502

play
_cons 2.747366 1.165853 2.36 0.018 .4623372 5.032395

insurance
_cons 2.534582 .9644841 2.63 0.009 .6442279 4.424936

stock
_cons 1.203416 .5361735 2.24 0.025 .1525356 2.254297

From the output, parameters for the second class are larger than
those on the first class. Postestimation commands will help us to
interpret this output.



To interpret the classes, we could compare the mean of the
(counter-factual) conditional probabilities for each answer on each
class; (the ones we get with predict by default) estat lcmean will
do that.

. estat lcmean

Latent class marginal means Number of obs = 216

Delta-method
Margin Std. Err. [95% Conf. Interval]

1
accident .7135879 .0403588 .6285126 .7858194

play .3296193 .0496984 .2403572 .4331299
insurance .3540164 .0485528 .2655049 .4538042

stock .1323726 .0383331 .0734875 .2268872

2
accident .9931933 .0253243 .0863544 .9999956

play .9397644 .0659957 .6135685 .9935191
insurance .9265309 .0656538 .6557086 .9881667

stock .769132 .0952072 .5380601 .9050206



Also, we compute the predicted probabilities for each class.

Prior probabilities are the ones predicted by the logistic model for
the latent class, which (with no covariates) will have no variations
across the data.

. predict classpr*, classpr

. summ classpr*

Variable Obs Mean Std. Dev. Min Max

classpr1 216 .7207538 0 .7207538 .7207538
classpr2 216 .2792462 0 .2792462 .2792462



This is an estimator of the population expected means for these
variables. These estimates, and their confidence intervals can be
obtained with estat lcprob.

. estat lcprob

Latent class marginal probabilities Number of obs = 216

Delta-method
Margin Std. Err. [95% Conf. Interval]

C
1 .7207539 .0580926 .5944743 .8196407
2 .2792461 .0580926 .1803593 .4055257



Stata provides some tools to evaluate goodness of fit:

. estat lcgof

Fit statistic Value Description

Likelihood ratio
chi2_ms(6) 2.720 model vs. saturated

p > chi2 0.843

Information criteria
AIC 1026.935 Akaike´s information criterion
BIC 1057.313 Bayesian information criterion



Concluding remarks:
I gsem offers a framework where we can fit models accounting

for latent classes.
I Responses might take one or more of the distributions

supported by gsem.
I Discrete latent variables might have more than two groups,

and more than one latent variable also might be included.
I Latent class models that have one dependent variable, can be

seen as finite mixture models. The fmm prefix allows us to
easily fit finite mixture models for a variety of distributions.



Appendix 1: Using predict after the role conflict dataset
Prior probability of class membership, P(Ck) 1

P(Y ∈ C2) predict newar, classpr class(2)

Posterior probability of class membership, (Bayes formula)
Ppost(Y ∈ C2) predict newvar, class(2) classposteriorpr

Probabilities of positive outcome, conditional on class (default) 2

P(Y1 = 1|C2) predict new, mu outcome(accident) class(2)

Probabilities of positive outcome, marginal on (prior) class probability 3

P(Y 1 = 1) predict newvar, mu outcome(1) marginal

Probabilities of positive outcome, marginal on posterior class probability
Ppost(Y 1 = 1) predict newvar, mu outcome(1) pmarginal

1in this modle will be constant, because of no covariates in LC equation
2constant, because there are no covariates in accident equation
3constant, because there are no predictors at all



Appendix 2: Predictions after LCA, general case

(Prior) probability of class membership
π̂i = P(C = i , z, γ,Θ), predict p*, classpr [class(i)]
for each i Creates g variables by default

Posterior probability of class membership
π̃i = P(C = i ,Y, z, γ,Θ), predict postp*, classpostpr [class(i)]
for each i Creates g variables by default

Expected value of Y, conditional on class
µ̂i = E (Y|C = i , z,Θ), predict m*, mu [outcome(j) class(i)]
for each i ;(Y = Y1, . . .Yn) Creates n × g variables by default

Expected value of Y, marginal on (prior) class probability
µ̂ = E (Y|z, γ,Θ) predict m*, mu marginal [outcome(j)]
, all j (based on π̂i ) Creates n variables by default

Expected value of Y, marginal on posterior class probability
µ̃ = Epost(Y|z, γ,Θ) predict m*, mu pmarginal [outcome(j)]
, all j (based on π̃i ) Creates n variables by default


