New methods of interpretation using marginal effects for nonlinear models

Scott Long¹

¹Departments of Sociology and Statistics Indiana University

EUSMEX 2016: Mexican Stata Users Group Mayo 18, 2016

Version: 2016-05-09

Road map for talk

Goals

- 1. Present new methods of interpretation using marginal effects
- 2. Show how to implement these methods with Stata

Outline

- 1. Statistical background
 - ► Binary logit model
 - Standard definitions of marginal effects
 - Generalizations of marginal effects
- 2. Stata commands
 - Estimation using factor notation, storing estimates, and gsem
 - Post-estimation using margins and lincom
 - SPost13's m* commands
- 3. Example modeling the occurrence of diabetes

Logit model

Nonlinear in probability

$$\pi(\mathbf{x}) = \frac{\exp(\mathbf{x}'\boldsymbol{\beta})}{1 + \exp(\mathbf{x}'\boldsymbol{\beta})} = \Lambda(\mathbf{x}'\boldsymbol{\beta})$$

<u>Marginal effect</u>: additive change in probability for change in x_k holding other variables at specific values

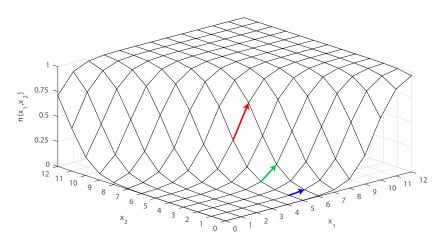
Multiplicative in odds

$$\Omega(\mathbf{x}) = \frac{\pi(\mathbf{x})}{1 - \pi(\mathbf{x})} = exp(\mathbf{x}'\boldsymbol{eta})$$

<u>Odds ratio</u>: multiplicative change in $\Omega(\mathbf{x})$ for change in x_k holding other variables constant

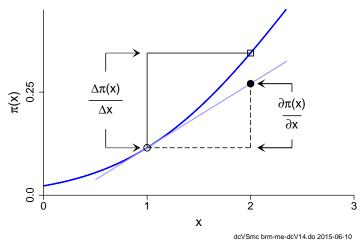
Logit model: measures of effect

- 1. Odds ratios: identical at each arrow
- 2. Marginal effects: different at each arrow



Marginal effects

- 1. **Marginal change**: instantaneous rate of change in $\pi(x)$
- 2. **Discrete change**: change in $\pi(x)$ for discrete change in x



Definition of discrete change

- 1. Variable x_k changes from start to end
- 2. The remaining x's are held constant at specific values $\mathbf{x} = \mathbf{x}^*$
- 3. Discrete change for x_k

$$DC(x_k) = \frac{\Delta \pi(\mathbf{x})}{\Delta x_k(\text{start} \to \text{end})} = \pi(x_k = \text{end}, \mathbf{x} = \mathbf{x}^*) - \pi(x_k = \text{start}, \mathbf{x} = \mathbf{x}^*)$$

4. Interpretation

For a change in x_k from <u>start</u> to <u>end</u>, the probability changes by $DC(x_k)$, holding other variables at the <u>specified values</u>.

Examples of discrete change

1. DC conditional on the specific values x*

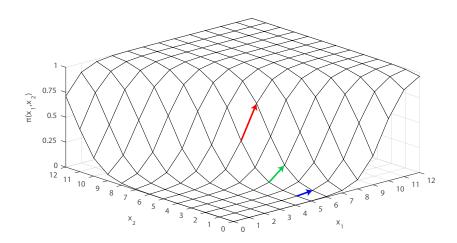
$$\frac{\Delta\pi(\mathbf{x}=\mathbf{x}^*)}{\Delta x_k(\mathbf{0}\to\mathbf{1})}=\pi(x_k=1,\mathbf{x}=\mathbf{x}^*)-\pi(x_k=0,\mathbf{x}=\mathbf{x}^*)$$

2. DC conditional on the observed values for observation i

$$\frac{\Delta \pi(\mathbf{x} = \mathbf{x}_i)}{\Delta x_{ik}(x_{ik} \to x_{ik} + 1)} = \pi(x_k = x_{ik} + 1, \mathbf{x} = \mathbf{x}_i) - \pi(x_k = x_{ik}, \mathbf{x} = \mathbf{x}_i)$$

The challenge of summarizing the effect of x_k

Since the value of $\Delta \pi / \Delta x_k$ depends on where it is evaluated, how do you summarize the effect?



Common summary measures of discrete change

DC at the mean: change at the center of the data

$$\mathsf{DCM}(x_k) = \frac{\Delta \pi(\mathbf{x} = \overline{\mathbf{x}})}{\Delta x_k(\mathsf{start} \to \mathsf{end})} = \pi(x_k = \mathsf{end}, \overline{\mathbf{x}}) - \pi(x_k = \mathsf{start}, \overline{\mathbf{x}})$$

For someone who is average on all variables, increasing x_k from start to end changes the probability by $DCM(x_k)$.

Average DC: average change in estimation sample

$$ADC(x_k) = \frac{1}{N} \sum_{i=1}^{N} \frac{\Delta \pi(\mathbf{x} = \mathbf{x}_i)}{\Delta x_{ik}(\mathsf{start} \to \mathsf{end})}$$

On average, increasing x_k from <u>start</u> to <u>end</u> changes the probability by $ADC(x_k)$.

Variations in computing discrete change

Conditional and average change
Conditional on specific values
Averaged in the estimation sample
Averaged in a subsample
Type of change
Additive change
Proportional change
Changes as a function of x 's
Change of a component of a multiplicative measure
Number of variables changed
One variable
Two or more mathematically linked variables
Two or more substantively related variables

Stata installation, data, and do-files

- 1. Examples use Stata 14.1, but most things can be done with Stata 13
- 2. Requires the spost13_ado package
- 3. Examples and slides available with search eusmex

Stata commands

1. Fitting logit model with factor syntax

```
logit depvar i.var c.var c.var1#c.var2
```

2. Regression estimates are stored and restored

```
estimates store ModelName
estimates restore ModelName
```

- 3. margins estimates predictions from current regression results
- 4. margins, post stores these predictions allowing lincom to estimate functions of predictions
- 5. mchange, mtable, mgen and mlincom are SPost wrappers

Modeling diabetes

- 1. Cross-section data from Health and Retirement Survey¹
- 2. Outcome is self-report of diabetes
 - 2.1 Small changes are substantively important
 - 2.2 Since changes can be statistically significant since N=16,071
- 3. Road map for examples
 - 3.1 Compute standard measures of change to explain commands
 - 3.2 Extend these commands to compute complex types of effects
 - 3.3 Illustrate testing equality of effects within and across models

¹Steve Heeringa generously provided the data used in *Applied Survey Data Analysis* (Heeringa et al., 2010). Complex sampling is not used in my analyses.

Dataset and variables

. use hrs-gme-analysis2, clear (hrs-gme-analysis2.dta | Health & Retirement Study GME sample | 2016-04-08)

Variable	Mean	Min	Max	Label
diabetes	.205	0	1	Respondent has diabetes?
white	.772	0	1	Is white respondent?
bmi	27.9	10.6	82.7	Body mass index (weight/height^2)
weight height	174.9 66.3	73 48	400 89	Weight in pounds Height in inches
age	69.3	53	101	Age
female	.568	0	1	Is female?
hsdegree	.762	0	1	Has high school degree?

N=16,071

Two primary model specifications

1. Model Mbmi includes the BMI index

2. Model Mwt includes height and weight

3. The estimates are...

Odds ratios and p-values tell us little

Variable	Mbmi	Mwt
bmi	1.1046*	
weight		1.0165*
height		0.9299*
white White	0.5412*	0.5313*
age	1.3091*	1.3093*
c.age#c.age	0.9983*	0.9983*
female Women	0.7848*	0.8743#
hsdegree HS degree	0.7191*	0.7067*
_cons	0.0000*	0.0001*
bic	14991.26	14982.03

Note: # significant at .05 level; * at the .001 level.

Average discrete change

- 1. mchange is a useful first step after fitting a model
 - . estimates restore Mbmi
 - . mchange, amount(sd) // compute average discrete change logit: Changes in Pr(y) | Number of obs = 16071

	Change	p-value
bmi		
+SD	0.097	0.000
white White vs Non-white	-0.099	0.000

(output omitted)

2. Interpretation

Increasing BMI by one standard deviation on average increases the probability of diabetes .097.

On average, the probability of diabetes is .099 less for white respondents than non-white respondents.

3. Where did these numbers come from?

Tool: margins, at(...) and atmeans

- 1. By default,
 - 1.1 margins computes prediction for every observation
 - 1.2 Then the predictions are averaged
- 2. Options allow predictions at "counterfactual" values of variables
- 3. Average prediction assuming $\underline{\text{everyone}}$ is white

```
margins, at(white=1)
```

4. Two average predictions under two conditions

```
margins, at(white=1) at(white=0)
```

5. Conditional prediction if white with means for other variables

```
margins, at(white=1) atmeans
```

ADC for binary x_k : ADC(white)

1. ADC(white) is the difference in average probabilities

ADC =
$$\frac{1}{N} \sum_{i} \pi(\text{white} = 1, \mathbf{x} = \mathbf{x}_{i}) - \frac{1}{N} \sum_{i} \pi(\text{white} = 0, \mathbf{x} = \mathbf{x}_{i})$$

2. margins computes the two averages

2

```
. margins, at(white=0) at(white=1) post
Expression : Pr(diabetes), predict()
1._at
     : white
2. at : white
                        Delta-method
                                             P>|z|
                                                       [95% Conf. Interval]
                  Margin
                          Std. Err.
        _at
         1
                .2797806
                          .0073107
                                             0.000
                                      38.27
                                                        . 265452
                                                                   .2941092
```

52.76

0.000

.1738245

.0034215

3. 1._at is the average treating everyone as nonwhite

.1805306

1._at =
$$\frac{1}{N} \sum_{i} \pi(\mathtt{white} = 0, \mathbf{x} = \mathbf{x}_i)$$

4. 2._at is the average treating everyone as white

.1872367

ADC for binary x_k : ADC(white)

5. Option post saves the predictions to e(b)

```
. matlist e(b)

1. 2.
_at _at

y1 .2797806 .1805306
```

6. lincom computes ADC(white)

```
. lincom _b[2._at] - _b[1._at]
( 1) - 1bn._at + 2._at = 0
```

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
(1)	09925	.0082362	-12.05	0.000	1153927	0831073

7. Interpretation

On average, being white decreases the probability of diabetes by .099 (p < .001).

Tool: mlincom simplifies lincom

1. lincom requires column names from e(b) that can be complex

```
lincom (_b[2._at#1.white] - _b[1._at#1.white]) ///
- (_b[2._at#0.white] - _b[1._at#0.white])
```

2. mlincom uses column numbers in e(b) or rows in margins output

```
mlincom (4-2) - (3-1)
```

Tool: margins, at(varnm = generate(exp))

- margins, at(varnm = generate(exp)) is a powerful, nearly undocumented option that generates values for making predictions
- 2. Trivially, average prediction at observed values of bmi

```
margins, at(bmi = gen(bmi))
```

3. Average prediction at observed values plus 1

```
margins, at(bmi = gen(bmi+1))
```

4. Two average predictions

```
margins, at(bmi = gen(bmi)) at(bmi = gen(bmi+1))
```

- 5. Average at observed plus standard deviation
 - 1] quietly sum bmi
 - 2] local sd = r(sd)
 - 3] margins, at(bmi = gen(bmi+'sd'))

ADC for continuous x_k : ADC(bmi + sd)

1. Compute probabilities at observed bmi and observed + sd

```
. quietly sum bmi
. local sd = r(sd)
. margins, at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd´)) post
Expression : Pr(diabetes), predict()
1._at
            : bmi
                              = bmi
2. at
            : bmi
                              = bmi + 5.770835041238605
                  Margin Std. Err.
                                              P>|z|
                                                         [95% Conf. Interval]
        _at
                 .2047166 .0030338
                                       67.48
                                              0.000
                                                         .1987704
                                                                     .2106627
                 .3017056
                         .005199
                                       58.03
                                              0.000
                                                         .2915159
                                                                     .3118954
```

2. ADC(bmi + sd)

```
. mlincom 2 - 1, stats(all)

lincom se zvalue pvalue 11 ul

1 0.097 0.004 27.208 0.000 0.090 0.104
```

On average, increasing BMI by one standard deviation, about 6 points, increases the probability of diabetes by .097 (p < .001).

Tool: mtable wrapper for margins

- 1. margins output is complete, not compact
- 2. mtable executes margins and simplifies the output (and more)
 - mtable, commands lists the margins commands used
 - mtable, detail shows margins output and mtable output

DCM for continuous x_k: DCM(bmi + sd)

Discrete change at the mean

1. Let bmi increase from mean(bmi) to mean(bmi) + sd(bmi)

```
. qui sum bmi
. local mn = r(mean)
. local mnplus = r(mean) + r(sd)
```

2. Option atmeans holds other variables at their means

```
. margins, atmeans at(bmi = `mn') at(bmi = `mnplus') post
Expression : Pr(diabetes), predict()
1._at
            : bmi
                                 27,89787
                         = .2284239 (mean)
             0.white
             1.white = .7715761 (mean)
                          = 69.29276 (mean)
             age
             0.female = .4315226 (mean)
                         = .5684774 (mean)
             1.female
                            = .2375086 (mean)
             0.hsdegree
                                 .7624914 (mean)
             1.hsdegree
                            = 33.6687
            : bmi
2. at
             0.\text{white} = .2284239 \text{ (mean)}
             1.white
                                 .7715761 (mean)
<continued>
```

DCM for continuous x_k : DCM(bmi + sd)

```
age = 69.29276 (mean)

0.female = .4315226 (mean)

1.female = .5684774 (mean)

0.hsdegree = .2375086 (mean)

1.hsdegree = .7624914 (mean)
```

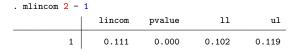
	Margin	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
_at						
1	.2097641	.0045531	46.07	0.000	.2008401	.2186881
2	.3202789	.0066246	48.35	0.000	.307295	.3332628

DCM for continuous x_k : DCM(bmi + sd)

2. Alternatively, mtable runs margins and reformats the results

69.3

Current | 3. DCM(bmi + sd)



.772

For an <u>average person</u>, increasing BMI by one standard deviation increases the probability of diabetes by .111 (p < .001).

.568

.762

Generalized measures of discrete change

- 1. mchange makes the above computations automatically
- 2. I did it the hard way to illustrate powerful commands
- 3. Now these commands are used for some interesting things

Proportional change in x_k

1. Body mass can be measured with height and weight

- 2. ADC(weight + 25) increases weight by 25 pounds for everyone
- 3. Increasing weight 25 pound is a
 - ▶ 25% increase from 100 pounds
 - ▶ 14% increase from average weight
 - ▶ 8% increase from 300 pounds
- 4. Is the effect of a <u>percentage increase</u> in weight more meaningful than an additive increase?
- 5. First, compute ADC(weight+25)...

Proportional change in x_k : ADC(weight+25)

1. Computing ADC(weight +25)

. estimates restore Mwt

```
. mtable, at(weight = gen(weight)) at(weight = gen(weight + 25)) post
Expression: Pr(diabetes), predict()
```

	Pr(y)
1	0.205
2	0.271

. quietly mlincom 2 - 1, rowname(ADC add) clear

Proportional change in x_k : ADC(weight*1.14)

2. A simple change computes ADC(weight * 1.14)

```
. estimates restore Mwt
. mtable, at(weight = gen(weight)) at(weight = gen(weight * 1.14)) post
Expression: Pr(diabetes), predict()
```

	Pr(y)
1 2	0.205 0.273

. mlincom 2 - 1, rowname(ADC pct) add

	lincom	pvalue	11	ul
ADC add	0.067 0.068	0.000	0.062 0.063	0.071 0.073

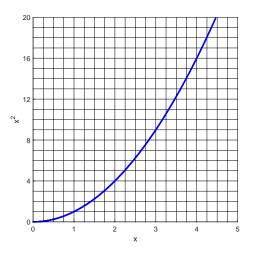
3. The effects are deceptively similar

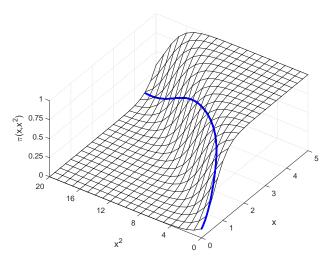
- 1. With polynomials multiple variables must change together
- 2. For example,

$$\frac{\Delta \pi(\mathbf{x})}{\Delta \text{age}(50 \to 60)} = \pi(\text{age} = 60, \text{agesq} = 60^2) - \pi(\text{age} = 50, \text{agesq} = 50^2)$$

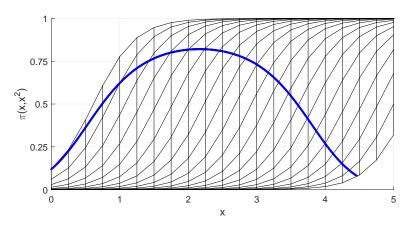
- 3. This can be done two ways
 - 3.1 The easy way with factor syntax
 - 3.2 The hard way with at(... = gen(...))

1. With x and x^2 only values on the blue curve are mathematically possible





2. Changes in the probability reflect linked changes in x and x^2



3. The probability increases and decreases as x and implicity x^2 change

Tool: factor notation for polynomials

Without factor notation

1. Generate age-squared

```
generate agesq = age * age
```

2. Model specification

```
logit diabetes c.age c.agesq ...
```

With factor notation

1. Model specification where c. is necessary

```
logit diabetes c.age##c.age ...
```

- 2. c.age##c.age does three things
 - 2.1 Adds c.age to the model
 - 2.2 Creates c.age#c.age ≡ c.age*c.age
 - 2.3 Adds c.age#c.age to the model
- 3. When c.age changes, margins automatically changes c.age#c.age

Discrete change with age & age²

Correct ADC with factor notation

- 1. age and age#age automatically change together
 - . logit diabetes c.age##c.age c.bmi i.white i.female i.hsdegree, or (output omitted)
 - . mtable, at(age = gen(age)) at(age = gen(age+10)) post

Expression: Pr(diabetes), predict()

	Pr(y)
1	0.205
2	0.223

. mlincom 2 - 1, rowname(FV)

	lincom	pvalue	11	ul
1	0.018	0.000	0.011	0.024

2. Interpretation

On average, a ten-year increase in age increases the probability of diabetes by .02 (p < .001).

Discrete change with age & age²

Same results without factor notation

The power of at(gen())

- 1. With factor syntax you do not need at(...=gen(...)) for polynomials
- 2. However, at(...=gen(...)) allows complex links among variables

Discrete change with associated variables

- 1. Age and age-squared are mathematically linked
- 2. Other variables could be substantively associated
- 3. Example: To examine the effect of cultural capital on health, change all cultural assets together, not a single asset
- 4. Example: Are "larger people" (taller people with the same body mass) more likely to have diabetes?
 - ▶ Use height to predict weight
 - Use margins, at(...=gen()) to change height and weight together

This example illustrates the power of margins, at(...=gen(...))

Associated variables: ADC(height, weight)

1. Regress weight on height and height squared

. regress weight c.height##c.height, noci
 (output omitted)

R-squared = 0.2575

weight	Coef.	Std. Err.	t	P> t
height	-6.338708	1.61073	-3.94	0.000
c.height#c.height	.0855799	.0120867	7.08	0.000
_cons	217.5991	53.5548	4.06	0.000

2. Save estimates

- . $scalar b0 = _b[_cons]$
- . scalar b1 = _b[height]
- . scalar b2 = _b[c.height#c.height]

Associated variables: ADC(height, weight)

3. Use at(gen(...)) to predicts weight assuming a 6" change in height

```
17
    . mtable, post ///
21
          at( height = gen(height)
                                                /// observed height
31
              weight = gen(weight) )
                                               /// observed weight
    >
4]
          at( height = gen(height+6)
                                             /// +6 inches
5]
              weight = gen(b0 + b1* (height+6) /// +estimated weight
61
                             + b2*((height+6)^2)) ) //
Expression: Pr(diabetes), predict()
               Pr(v)
        1
               0.205
               0.208
. mlincom 2 - 1
                lincom
                        pvalue
                                      11
                                                ul
          1
                 0.004
                          0.601 -0.010
                                             0.017
```

4. Interpretation

There is no evidence that being physically larger without greater body mass contributes to the incidence of diabetes.

Distribution of effects

- 1. ADC and DCM are common summary measures of change
- 2. Each uses the mean to summarize a distribution
- 3. ADC: average discrete change

$$ADC(x_1) = \frac{1}{N} \sum_{i} \left[\frac{\Delta \pi}{\Delta(x_1 | \mathbf{x} = \mathbf{x}_i)} \right]$$

4. DCM: discrete change at the mean

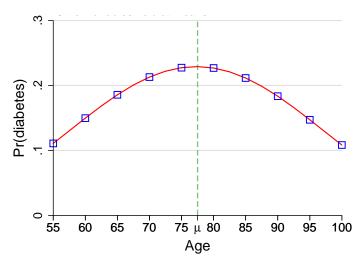
$$\mathsf{DCM}(x_1) = \frac{\Delta \pi}{\Delta(x_1 | \mathbf{x} = \overline{\mathbf{x}})}$$
 where $\overline{x}_k = \frac{1}{N} \sum_i x_{ik}$

5. Hypothetical data shows why means can be misleading

Distribution of effects: ADC and DCM

Hypothetical data

6. Does age affect diabetes since ADC(age) and DCM(age) are near 0?



Undocumented Tool: margins, generate()

- margins, gen(stub) creates variables with predictions for each observation (help margins generate)
- 2. For example, to save probabilities for 16,071 cases and average them

```
. margins, gen(Prob)
Predictive margins
                                            Number of obs =
                                                                   16,071
Expression
            : Pr(diabetes), predict()
                        Delta-method
                 Margin
                          Std. Err.
                                            P>|z|
                                                      [95% Conf. Interval]
                                        z
                .2047166
                          .0030316
                                     67.53
                                            0.000
                                                      .1987747
      _cons
                                                                 .2106584
```

. sum Prob1 // matches margins estimate

Variable	Obs	Mean	Std. Dev.	Min	Max
Prob1	16.071	.2047166	.1229016	.0123593	.9067207

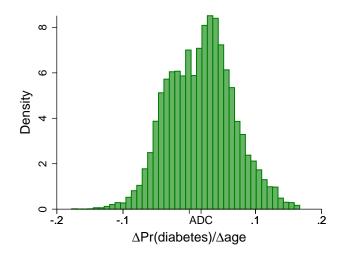
Distribution of effects: ADC(age)

- 1. To evaluate ADC(age) look at the distribution of DC(age;)
- 2. Create a variable with the DC for each observation

```
1] margins, generate(PRage) ///
2] at(age = gen(age)) at(age = gen(age+10))
3] gen DCage10 = PRage2 - PRage1
4] lab var DCage10 "DC for 10 year increase in age"
```

Distribution of effects: ADC(age)

3. The <u>average</u> effect of age is small, but the effect is large and negative for some people and large and positive for others

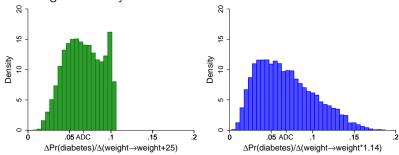


Distribution of effects: ADC(weight)

1. Now consider ADC(weight+25) and ADC(weight*1.14)

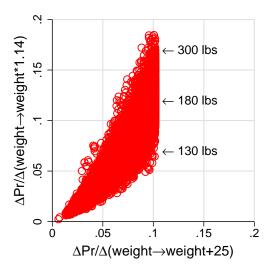
- 1] mtable, gen(PRadd) at(weight=gen(weight)) at(weight=gen(weight+25)) post
- 2] generate DCadd = PRadd2 PRadd1
- 3] lab var DCadd "DC for 25 pound increase"
- 4] mtable, gen(PRpct) at(weight=gen(weight)) at(weight=gen(weight*1.14)) post
- 5] generate DCpct = PRpct2 PRpct1
- 6] lab var DCpct "DC for 14 percent increase in weight"

2. The changes have very different distributions



Distribution of effects: ADC(weight)

3. While the ADCs are close, effects for individuals can differ greatly

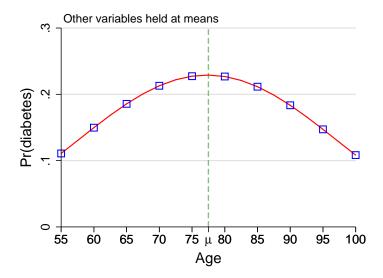


Distribution of effects: limitations of summaries

- 1. ADC and DCM are more useful than odds ratios!
- 2. In nonlinear models, any summary measures can be misleading
- 3. The distribution of effects is valuable for assessing effects and is simple with margins, generate()
 - ▶ Long and Freese (2014) show how do this without the gen() option
- 4. For age, multiple DCRs are more useful than ADC or DCM

Comparing DCRs

1. Are the DCR(age) significantly different at different ages?



Comparing DCR(age) at different ages

2. Compute probabilities at 4 ages with other variables at means

```
. mtable, at(age=(60(10)90)) post atmeans
Expression: Pr(diabetes), predict()
```

	age	Pr(y)
1	60	0.150
2 3	70	0.213
3	80	0.227
4	90	0.183

Specified values of covariates

	bmi	1. white	1. female	1. hsdegree
Current	27.9	.772	.568	.762

3. DCRs at different ages

```
. mlincom 2-1, clear rowname(DCR60)
```

- . mlincom 3-2, add rowname(DCR70)
- . mlincom 4-3, add rowname(DCR80)

Comparing DCR(age) at different ages

4. Test differences in DCRs

```
. mlincom (2-1) - (3-2), add rowname(DCR60 - DCR70)

. mlincom (2-1) - (4-3), add rowname(DCR60 - DCR80)

. mlincom (3-2) - (4-3), add rowname(DCR70 - DCR80)
```

5. Summarizing

. mlincom, twidth(14)

	lincom	pvalue	11	ul
DCR60	0.063	0.000	0.054	0.073
DCR70	0.014	0.004	0.004	0.023
DCR80	-0.043	0.000	-0.061	-0.026
DCR60 - DCR70	0.049	0.000	0.037	0.062
DCR60 - DCR80	0.107	0.000	0.083	0.130
DCR70 - DCR80	0.057	0.000	0.046	0.069

6. Interpretation

The effects of a ten-year increase in age are significantly different at ages 60, 70, and 80 (p < .001).

Comparing ADCs for two variables

1. ADC(race) and ADC(bmi+sd) have similar size, but different signs

	Change	p-value
bmi		
+SD	0.097	0.000
white		
White vs Non-white	-0.099	0.000

- 2. Can you justify saying the effects have the same size?
- 3. To test equality they must be estimated simultaneously

Comparing ADC(white) and ADC(bmi)

4. Simultaneously compute components of ADC(white) and ADC(bmi)

```
. quietly sum bmi
. local sd = r(sd)
. margins, at(white=(0 1)) at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd')) post
Predictive margins
                                             Number of obs
                                                                   16,071
Model VCE
            · OTM
Expression : Pr(diabetes), predict()
1. at
     : white
2. at : white
3._at
     : bmi
                             = bmi
4._at
                             = bmi + 5.770835041238605
            : bmi
```

	Margin	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
_at						
1	.2797806	.0073107	38.27	0.000	.265452	.2941092
2	.1805306	.0034215	52.76	0.000	.1738245	.1872367
3	.2047166	.0030338	67.48	0.000	.1987704	.2106627
4	.3017056	.005199	58.03	0.000	.2915159	.3118954

Comparing ADC(white) and ADC(bmi)

4. Compute effects and test equality

- . qui mlincom (2-1), rowname(ADC white) clear
- . qui mlincom (4-3), rowname(ADC bmi) add
- . mlincom (2-1) + (4-3), rowname(Sum of ADCs) add

	lincom	pvalue	11	ul
ADC female ADC bmi	-0.099 0.097	0.000	-0.115 0.090	-0.083 0.104
Sum of ADCs	-0.002	0.809	-0.021	0.016

Conclusion

The health cost of being non-white is equivalent to a standard deviation increase in body mass (p > .80).

Comparing ADC across subsamples

- 1. An ADC is typically averaged over the estimation sample
- 2. By averaging within groups, we can examine effects for different groups
 - ▶ Is the average effect of BMI the same for whites and non-whites?
- 3. This requires margins, over()

Tool: margins, over()

- 1. By default, margins averages over all observations
- 2. Averages on subsamples are possible with if and over()
- 3. Averaging for the non-white subsample

```
margins if white==0, ///
  at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd'))
```

4. For the white subsample

```
margins if white==1, ///
  at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd'))
```

5. For both subsamples simultaneously

```
margins, over(white) ///
  at(bmi = gen(bmi)) at(bmi = gen(bmi+'sd'))
```

Comparing ADC(bmi) by race

1. Use over() to compute components for group specific ADC(bmi)

```
. margins, over(white) at(bmi = gen(bmi)) at(bmi = gen(bmi + `sd')) post
Expression : Pr(diabetes), predict()
             : white
over
1. at
             : 0.white
                   bmi
                                   = bmi
               1.white
                   bmi
                                   = bmi
2. at
             0.white
                   bmi
                                   = bmi + 5.770835041238605
               1. white
                   bmi
                                   = bmi + 5.770835041238605
```

	1	Delta-method				
	Margin	Std. Err.	z	P> z	[95% Conf.	Interval]
_at#white						
1#Non-white	.3097249	.0072773	42.56	0.000	.2954616	.3239881
1#White	.173629	.0032892	52.79	0.000	.1671824	.1800757
2#Non-white	.4302294	.009226	46.63	0.000	.4121468	.448312
2#White	.2636564	.0054903	48.02	0.000	.2528955	.2744172

Comparing ADC(bmi) by race

2. Computing ADC(bmi) by group

```
. qui mlincom 4-2, clear rowname(White: ADC bmi)
               3-1. add rowname(Non-white: ADC bmi)
. mlincom
                 lincom
                           pvalue
                                         11
                                                    ul
White
     ADC bmi
                  0.090
                            0.000
                                      0.083
                                                 0.097
Non-white
                  0.121
                                      0.112
                                                 0.129
     ADC bmi
                            0.000
```

3. A second difference compares effects for the groups

. $mlincom (4-2)$	2) - (3-1),	rowname(Di	fference:	ADC bmi)
	lincom	pvalue	11	ul
Difference ADC bmi	-0.030	0.000	-0.034	-0.027

4. Interpretation

The average effect of BMI is significantly larger for non-whites than whites (p < .001).

Comparing ADCs across models

- 1. Does the effect of a variable change with model specification?
- 2. **Tool**: margins, dydx(female) computes DC(female) since i.female
- 3. Computing ADC(female) for two models

```
. qui logit diabetes c.bmi i.female i.white i.female c.age##c.age i.hsdegree
```

- . qui mtable, $\operatorname{dydx}(\operatorname{female})$ rowname(ADC(female) with Mbmi) clear
- . qui logit diabetes c.weight c.height i.female i.white c.age##c.age i.hsdegree
- . mtable, $\operatorname{dydx}(\operatorname{female})$ rowname(ADC(female) with Mwt) below

Expression: Pr(diabetes), predict()

d Pr(y)

	u 11(j)
ADC(female) with Mbmi	-0.036
ADC(female) with Mwt	-0.020

4. To test if they are equal, the effects must be estimated simultaneously

Tool: simultaneous model estimation with gsem

- 1. gsem simultaneously fits multiple GLM models
- 2. The obvious approach does not work since

```
gsem ///
  (diabetes <- c.bmi i.female i.white c.age##c.age i.hsdegree, logit) ///
  (diabetes <- c.weight c.height i.female i.white c.age##c.age i.hsdegree, logit)
is interpreted as a single model

gsem ///
  (diabetes <- c.bmi i.female i.white c.age##c.age i.hsdegree ///</pre>
```

c.weight c.height, logit)3. The solution is to create cloned outcomes for each model

```
. clonevar lhsbmi = diabetes // outcome for bmi model
. clonevar lhswt = diabetes // outcome for weight height model
```

Comparing ADC(female) across models

1. Estimating the models simultaneously

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
lhsbmi <- bmi	.099441	.003747	26.54	0.000	.092097	.1067851
female Women	2423701	.0413006	-5.87	0.000	3233177	1614225
(output omitt	red)					

62 / 87

Comparing ADC(female) across models

2. Estimate ADC(female) for both models simultaneously

	dy/dx	z	P> z	[95% Conf.	Interval]	
1.female _predict						
1	0360559	.0061773	-5.84	0.000	0481631	0239487
2	0199213	.0089687	-2.22	0.026	0374997	0023429

Note: dy/dx for factor levels is the discrete change from the base level.

Comparing ADC(female) across models

3. Test if ADC(female) is the same in both models

. mlincom 1-2, stats(all)

	lincom	se	zvalue	pvalue	11	ul
1	-0.016	0.006	-2.526	0.012	-0.029	-0.004

4. Interpretation

The effect of being female is significantly larger when body mass is measured with the BMI index then when height and weight are used (p < .02).

Comparing effects across models: summary

- Jointly estimating models with gsem and computing effects with margins is a general approach for comparing effects across models (Mize et al., 2009)
- 2. gsem
 - 2.1 Fits the GLM class of models, but does not fit non-GLM models
 - 2.2 margins is slow (grumble, grumble)
- 3. suest
 - 3.1 Fits a much wider class of models
 - 3.2 margins is fast, but much harder to use (grumble, grumble)
- 4. suest and gsem produce identical results
- 5. Specialized commands like khb (Kohler et al., 2011) are available

Comparing groups

Linear regression

- 1. Coefficients differ by group such as $\beta_{\mathtt{female}}^{W}$ and $\beta_{\mathtt{female}}^{N}$
- 2. Analysis focuses on Chow tests such as H_0 : $\beta_{\texttt{female}}^N = \beta_{\texttt{female}}^W$

Logit and probit

- 1. Coefficients differ by group such as $\beta_{\tt female}^{\it W}$ and $\beta_{\tt female}^{\it N}$
- 2. The coefficients combines
 - 2.1 The effect of x_k which can differ by group
 - 2.2 The variance of the error which can differ by group
- 3. Since regression coefficients are identified to a scale factor, Chow-type tests of H_0 : $\beta_k^N = \beta_k^W$ are invalid (Allison, 1999)
- 4. Probabilities and marginal effects are identified (Long, 2009)

Comparing groups: outcomes and effects

Group differences can be examined two ways

1. Differences in probabilities

$$H_0: \pi_W(\mathbf{x} = \mathbf{x}^*) = \pi_N(\mathbf{x} = \mathbf{x}^*)$$

Is the probability of diabetes the same for white and non-white respondents who have the same characteristics?

2. Differences in marginal effects

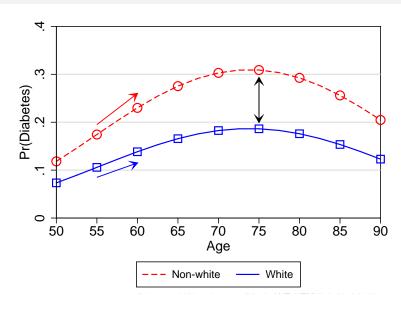
$$H_0$$
: $\frac{\Delta \pi_W}{\Delta x_k} = \frac{\Delta \pi_N}{\Delta x_k}$

Is the effect of x_k the same for whites and non-whites?

3. These dimensions of difference are shown in the next graph

Comparing groups: outcomes and effects

Hypothetical data



Comparing groups: model estimation

1. Factor syntax allows coefficients to differ by white

```
logit diabetes ibn.white ///
   ibn.white#(i.female i.hsdegree c.age##c.age c.bmi), nocon
```

2. This is equivalent to simultaneously estimating

```
logit diabetes i.female i.hsdegree c.age##c.age c.bmi if white==1
logit diabetes i.female i.hsdegree c.age##c.age c.bmi if white==0
```

3. Resulting in these estimates

Variable	Whites	NonWhites	
female			
Women	0.713	1.024	<== odds ratios
	0.000	0.755	<== p-values
hsdegree			
HS degree	0.706	0.743	
	0.000	0.000	
age	1.278	1.369	
	0.000	0.000	
:::	:::::	:::::	

Comparing groups: probabilities by age

1. Compute DC(white) at various ages

```
. mtable, dydx(white) at(age=(55(10)85)) atmeans stats(est p)
```

Expression: Pr(diabetes), predict()

p	d Pr(y)	age		_
0.000	-0.078	55	1	
0.000	-0.124	65	2	
0.000	-0.129	75	3	
0.000	-0.092	85	4	

Specified values of covariates

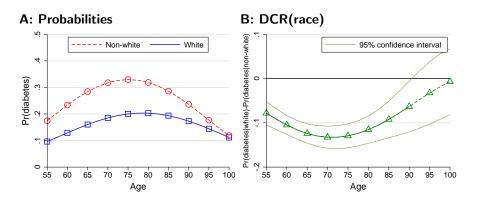
	0.	1.	1.	. 1.	
	white	white	female	hsdegree	bmi
Current	.228	.772	.568	.762	27.9

2. Example of interpretation

The probability of diabetes is significantly larger for 55 year-old non-whites than whites who are average on other characteristics (p<.01).

3. Graphically we can show effects at multiple ages

Comparing groups: probabilities by age

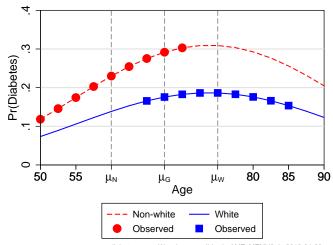


Note: these plots can be computed with mgen or marginsplot

Comparing groups: ADC or DCM?

Hypothetical data

- 1. ADC reflects coefficients and the distribution of predictors
- 2. DCR is the effect at specific values



Comparing groups: ADC or DCM?

Comparing ADCs

- 1. Differences in ADCs are determined by both
 - 1.1 Differences in the probability curves
 - 1.2 Differences in distribution of variables

Comparing DCRs

- 1. DCRs show differences in probability curves at a specific location
- 2. DCRs do not depend on the distribution of variables

Which to use?

1. The answer depends on what you want to know?

Comparing groups: ADC(bmi + 5)

1. To compute ADC(bmi + 5) by race

```
. mtable, over(white) at(bmi = gen(bmi)) at(bmi = gen(bmi+5)) post
Expression: Pr(diabetes), predict()
```

```
Pr(y)

0.white#c.1 0.310
1.white#c.1 0.174
0.white#c.2 0.391
1.white#c.2 0.257
```

```
. qui mlincom 3-1, rowname(ADC(bmi) non) stats(est p) clear . qui mlincom 4-2, rowname(ADC(bmi) wht) stats(est p) add
```

mlincom (4-2) - (3-1), rowname(Difference) stats(est p) add

	lincom	pvalue
ADC(bmi) non	0.082	0.000
ADC(bmi) wht	0.083	0.000
Difference	0.002	0.826

Conclusion

The average effects of BMI are not significantly different for whites and non-whites (p=.83).

Comparing groups: DCR(age + 10)

- 1. Since ADC(age) might not be useful due to nonlinearity, we compare DCR(age+10) at different ages
 - 1.1 Other variables are held at sample means
 - 1.2 Group specific means could be used (Long and Freese, 2014)
- 2. For example, DCR(age + 10) at 55

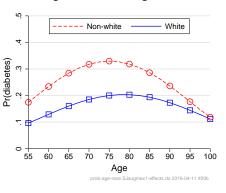
```
mtable, at(age=55 white=(0 1)) at(age=65 white=(0 1)) atmeans post
mlincom 3-1, rowname(DC nonwhite) stats(est p) clear
mlincom 4-2, rowname(DC white) stats(est p) add
mlincom (4-2) - (3-1), rowname(Dif at 55) stats(est p) add
```

3. And so on, with the following results

Comparing groups: DCR(age+10)

4. DCRs show group differences in effect of age at different ages

	lincom	pvalue
55: DC non	0.110	0.000
DC white	0.064	0.000
Difference	-0.046	0.001
70: DC non	0.001	0.940
DC white	0.018	0.001
Difference	0.017	0.180
85: DC non	-0.109	0.000
DC white	-0.049	0.000
Difference	0.060	0.003



5. The differences in DCRs do <u>not</u> depend on group differences in the distribution of age or other variables

* Decomposing an effect

1. The BMI index measures relative weight or body mass

$$BMI = \frac{weight_{kg}}{height_m^2} = 703 \times \frac{weight_{lb}}{height_{in}^2}$$

- 2. Question 1: With BMI in the model, what is the effect of weight?
 - ▶ Why do this? DC(weight) is clearer to patients than DC(bmi)
- 3. Question 2: Does DC(weight) depend on how body mass is measured?
- 4. To answer these questions think of BMI as an interaction

$$BMI = 703 \times weight \times height^{-1} \times height^{-1}$$

Decomposing BMI: BMI as an interaction

1. Create components of BMI

```
generate heightinv = 1/height
label var heightinv "1/height"
generate S = 703
label var S "scale factor to convert from metric"
```

2. These models are identical

3. The estimates are identical

Variable	MbmiFV	Mbmi	
c.S#c.weight# c.heightinv#			-
c.heightinv	1.104553		<== odds ratio for BMI
	0.000		
bmi		1.1045533	<== odds ratio for BMI
		0.000	
white			
White	.5411742	.5411742	
	0.000	0.000	

Decomposing BMI: ADC(weight)

- 4. margins with factor syntax makes the rest trivial
- 5. ADC(weight) in MbmiFV changes only weight
 - . qui estimates restore MbmiFV
 - . mchange weight, amount(sd) delta(25)

logit: Changes in Pr(y) | Number of obs = 16071

Expression: Pr(diabetes), predict(pr)

	Change	p-value
weight +25	0.065	0.000

- 6. ADC(weight) in Mwt is slightly larger
 - . qui estimates restore Mwt
 - . mchange weight, amount(sd) delta(25)

logit: Changes in Pr(y) | Number of obs = 16071

Expression: Pr(diabetes), predict(pr)

	Change	p-value
weight +25	0.067	0.000

Decomposing an effect: summary

- 1. Factor variables and margins make the difficult decompositions trivial
- 2. Factor syntax understands interactions in model specifications
- 3. margins in turn understands interactions and handles the messy details

* Comparing ADCs across models

1. To compare ADC(weight) requires joint estimation

```
. clonevar lhsbmi = diabetes
. clonevar lhswt = diabetes
. gsem ///
>
     (lhsbmi <- c.s#c.weight#c.heightinv#c.heightinv ///
         i.white c.age##c.age i.female i.hsdegree, logit) ///
>
     (lhswt <- c.weight c.height ///
         i.white c.age##c.age i.female i.hsdegree, logit) ///
>
     . vce(robust)
Generalized structural equation model
                                            Number of obs
                                                                   16,071
Response
         : lhsbmi
Family
           : Bernoulli
Link
             : logit
Response : lhswt
           : Bernoulli
Family
Link
             : logit
Log pseudolikelihood = -14914.007
  (output omitted)
```

Comparing ADC(weight) in two models

2. Computing the average predictions for both equations

```
. margins, at(weight=gen(weight)) at(weight=gen(weight+25)) post
Predictive margins
                                                  Number of obs
                                                                           16,071
                                                                     =
Model VCE
             : Robust
             : Predicted mean (Diabetes?), predict(pr outcome(lhsbmi))
1._predict
2._predict
             : Predicted mean (Diabetes?), predict(pr outcome(lhswt))
1._at
             : weight
                                = weight
2._at
             : weight
                                = weight+25
                           Delta-method
                             Std. Err.
                                                  P>|z|
                                                             [95% Conf. Interval]
                   Margin
                                             Z
_predict#_at
        1 1
                  .2047166
                             .0030419
                                         67.30
                                                  0.000
                                                             .1987546
                                                                         .2106786
        1 2
                  . 2701404
                             .0044591
                                         60.58
                                                  0.000
                                                             . 2614007
                                                                           . 27888
         1
                  .2047166
                             .0030394
                                         67.35
                                                  0.000
                                                             .1987595
                                                                         .2106737
        2 2
                   . 271305
                             .0044054
                                         61.58
                                                  0.000
                                                             . 2626705
                                                                         .2799394
```

Comparing ADC(weight) in two models

3. ADC(weight) for each model and their difference

- . qui mlincom 2-1, rowname(Mbmi ADC) clear
- . qui mlincom 4-3, rowname(Mwt ADC) add
- . mlincom (4-3) (2-1), rowname(Difference) add

	lincom	pvalue	11	ul
Mbmi ADC	0.065	0.000	0.061	0.070
Mwt ADC	0.067	0.000	0.062	0.071
Difference	0.001	0.029	0.000	0.002

4. Conclusion

The effect of weight on diabetes are nearly identical whether body mass is measured with BMI or with height and weight (p = .03).

Conclusions

Model interpretation and Stata

- 1. Too often interpretation ends with estimated coefficients
- 2. Interpretation using predictions is more informative
 - ▶ I think of regression coefficients as "nuisance parameters"
- 3. Methods of interpretation must be practical
- 4. margins makes hard things easy, very hard things merely hard
- 5. Hopefully, Stata 15 will make impossible things possible

Conclusions

Marginal effects are only one method of interpretation

- 1. Standard marginal effects are more useful than odds ratios
- 2. mchange allows marginal effects to be a routine part of analysis
- 3. Today's talk shows how to customize marginal effects for the substantive application
- However, marginal effects are **not** the only or best method of interpretation
- 5. Tables and plots are often valuable (Long and Freese, 2014)
- 6. The best interpretation is motivated by your substantive question

Thanks to many people

Thank you for listening

Collaborators Parts of this work were developed with Long Doan, Jeremy Freese, Trent Mize, and Sarah Mustillo. Jeff Pitblado and David Drukker provided valuable help. Mistakes are my own.

Relevant publications There is a large literature on marginal effects and interpreting models. Long and Freese (2014) include many citations. The references directly related to this presentation are given below.

Bibliography

- Allison, P. D. 1999. Comparing logit and probit coefficients across groups. *Sociological Methods & Research* 28(2): 186–208.
- Cameron, A. C., and P. K. Trivedi. 2010. *Microeconometrics using Stata*. Revised ed. College Station, Tex.: Stata Press.
- Heeringa, S., B. West, and P. Berglund. 2010. *Applied survey data analysis*. Boca Raton, FL: Chapman and Hall/CRC.
- Kohler, U., K. B. Karlson, and A. Holm. 2011. Comparing coefficients of nested nonlinear probability models. *Stata Journal* 11(3): 420–438.
- Long, J. S. 2009. Group comparisons in logit and probit using predicted probabilities.
- Long, J. S., and J. Freese. 2014. *Regression Models for Categorical Dependent Variables Using Stata. Third Edition.* College Station, Texas: Stata Press.
- Mize, T. D., L. Doan, and J. S. Long. 2009. A General Framework for Comparing Marginal Effects Across Models.