Generalized method of moments (GMM) estimation in Stata 11

David M. Drukker

StataCorp

Encuentro de Usarios de Stata en México 2010

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

2 / 26

What is GMM?

- The generalize method of moments (GMM) is a general framework for deriving estimators
- Maximum likelihood (ML) is another general framework for deriving estimators.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

GMM and ML

- ML estimators use assumptions about the specific families of distributions for the random variables to derive an objective function
 - We maximize this objective function to select the parameters that are most likely to have generated the observed data
- GMM estimators use assumptions about the moments of the random variables to derive an objective function
 - The assumed moments of the random variables are known as the population moments
 - The data provide the sample moments
 - We minimize the objective function to select the parameters that yield the smallest differences between the population moments and the sample moments

(日)

• ML is a special case of GMM

What is generalized about GMM?

- For each assumed population moment, we obtain a population moment condition
- For each population moment condition, there is a sample moment condition
- In the method of moments (MM), we have the same number of sample moment conditions as we have parameters
- In the generalized method of moments (MM), we more sample moment conditions than we have parameters

Method of Moments (MM)

- We estimate the mean of a distribution by the sample, the variance by the sample variance, etc
- We want to estimate $\mu = E[y]$
 - The population moment condition is $E[y] \mu = 0$
 - The sample moment condition is

$$(1/N)\sum_{i=1}^N y_i - \mu = 0$$

- Our estimator is obtained by solving the sample moment condition for the parameter
- Estimators that solve sample moment equations to produce estimates are called method-of-moments (MM) estimators
 - This method dates back to Pearson (1895)

Ordinary least squares (OLS) is an MM estimator

- We know that OLS estimates the parameters of the condtional expectation of y_i = x_iβ + ε_i under the assumption that E[ε|x] = 0
- Standard probability theory implies that

$$E[\epsilon|\mathbf{x}] = \mathbf{0} \Rightarrow E[\mathbf{x}\epsilon] = \mathbf{0}$$

So the population moment conditions for OLS are

$$E[\mathbf{x}(y-\mathbf{x}\boldsymbol{\beta})]=\mathbf{0}$$

• The corresponding sample moment condtions are

$$(1/N)\sum_{i=1}^{N}\mathbf{x}_{i}(y_{i}-\mathbf{x}_{i}\boldsymbol{\beta})=\mathbf{0}$$

Solving for β yields

$$\widehat{\boldsymbol{\beta}}_{OLS} = \left(\sum_{i=1}^{N} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \sum_{i=1}^{N} \mathbf{x}_{i}' y_{i}$$

Generalized method-of-moments (GMM)

- The MM only works when the number of moment conditions equals the number of parameters to estimate
 - If there are more moment conditions than parameters, the system of equations is algebraically over identified and cannot be solved
 - Generalized method-of-moments (GMM) estimators choose the estimates that minimize a quadratic form of the moment conditions
 - GMM gets a close to solving the over-identified system as possible
 - GMM reduces to MM when the number of parameters equals the number of moment condtions

Definition of GMM estimator

- Our research question implies q population moment conditions $E[\mathbf{m}(\mathbf{w}_i, \boldsymbol{\theta})] = \mathbf{0}$
 - **m** is $q \times 1$ vector of functions whose expected values are zero in the population
 - w_i is the data on person i
 - $oldsymbol{ heta}$ is k imes 1 vector of parmeters, $k\leq q$
- The sample moments that correspond to the population moments are

$$\overline{\mathbf{m}}(\boldsymbol{\theta}) = (1/N) \sum_{i=1}^{N} \mathbf{m}(\mathbf{w}_i, \boldsymbol{\theta})$$

 When k < q, the GMM choses the parameters that are as close as possible to solving the over-identified system of moment equations

$$\widehat{\boldsymbol{\theta}}_{GMM} \equiv \operatorname{arg\ min}_{\boldsymbol{\theta}} \quad \overline{\mathbf{m}}(\boldsymbol{\theta})' \mathbf{W} \overline{\mathbf{m}}(\boldsymbol{\theta})$$

Some properties of the GMM estimator

$$\widehat{\boldsymbol{\theta}}_{GMM} \equiv \operatorname{arg min}_{\boldsymbol{\theta}} \quad \overline{\mathbf{m}}(\boldsymbol{\theta})' \mathbf{W} \overline{\mathbf{m}}(\boldsymbol{\theta})$$

- When k = q, the MM estimator solves $\overline{\mathbf{m}}(\theta)$ exactly so $\overline{\mathbf{m}}(\theta)' \mathbf{W} \overline{\mathbf{m}}(\theta) = \mathbf{0}$
- ullet W only affects the efficiency of the GMM estimator
 - Setting ${\bf W}={\bf I}$ yields consistent, but inefficent estimates
 - Setting $\mathbf{W} = \text{Cov}[\overline{\mathbf{m}}(\theta)]^{-1}$ yields an efficient GMM estimator
 - We can take multiple steps to get an efficient GMM estimator

$${f 0}$$
 Let ${f W}={f I}$ and get

$$\widehat{\boldsymbol{ heta}}_{GMM1} \equiv {
m arg min}_{\boldsymbol{ heta}} \quad \overline{\mathbf{m}}(\boldsymbol{ heta})'\overline{\mathbf{m}}(\boldsymbol{ heta})$$

2 Use $\widehat{\theta}_{GMM1}$ to get $\widehat{\mathbf{W}}$, which is an estimate of $Cov[\overline{\mathbf{m}}(\theta)]^{-1}$ 3 Get

$$\widehat{\boldsymbol{\theta}}_{GMM2} \equiv \arg\min_{\boldsymbol{\theta}} \quad \overline{\mathbf{m}}(\boldsymbol{\theta})' \widehat{\mathbf{W}} \overline{\mathbf{m}}(\boldsymbol{\theta})$$

• Repeat steps 2 and 3 using $\widehat{\theta}_{GMM2}$ in place of $\widehat{\theta}_{GMM1}$

The gmm command

- The new command gmm estimates paramters by GMM
- gmm is similar to nl, you specify the sample moment conditions as substitutable expressions
- Substitutable expressions enclose the model parameters in braces $\{\}$

The syntax of gmm |

• For many models, the population moment conditions have the form

 $E[\mathsf{z} e(oldsymbol{eta})] = \mathbf{0}$

where z is a $q \times 1$ vector of instrumental variables and $e(\beta)$ is a scalar function of the data and the parameters β

• The corresponding syntax of gmm is

```
gmm (eb_expression) [if][in][weight],
instruments(instrument_varlist) [options]
```

where some options are

<u>one</u>step <u>winit</u>ial(*wmtype*) <u>wmat</u>rix(*witype*) vce(*vcetype*) use one-step estimator (default is two-step estimator) initial weight-matrix **W** weight-matrix **W** computation after first step *vcetype* may be robust, cluster, bootstrap, hac

Modeling crime data I

• We have data

. use cscrime . describe	, clear			
Contains data obs: vars: size:	from csc 10,000 5 440,000 (9	rime.dta 95.8% of	memory free)	24 May 2008 17:01 (_dta has notes)
variable name	storage type	display format	value label	variable label
policepc arrestp convictp legalwage crime	double double double double double	%10.0g %10.0g %10.0g %10.0g %10.0g		police officers per thousand arrests/crimes convictions/arrests legal wage index 0-20 scale property-crime index 0-50 scale

Sorted by:

Modeling crime data II

• We specify that

 $crime_i = \beta_0 + policepc_i\beta_1 + legalwage_i\beta_2 + \epsilon_i$

• We want to model

 $E[\text{crime}|\text{policepc}, \text{legalwage}] = \beta_0 + \text{policepc}\beta_1 + \text{legalwage}\beta_2$

If *E*[*\epsilon*|policepc, legalwage] = 0, the population moment conditions

$$E\left[\begin{pmatrix} \text{policepc} \\ \text{legalwage} \end{pmatrix} \epsilon\right] = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

hold

OLS by GMM I

```
. gmm (crime - policepc*{b1} - legalwage*{b2} - {b3}), ///
> instruments(policepc legalwage) nolog
Final GMM criterion Q(b) = 6.61e-32
GMM estimation
Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 10000
GMM weight matrix: Robust
```

	Coef.	Robust Std. Err.	z	P> z	[95% Conf	. Interval]
/b1	4203287	.0053645	-78.35	0.000	4308431	4098144
/b2	-7.365905	.2411545	-30.54	0.000	-7.838559	-6.893251
/b3	27.75419	.0311028	892.34	0.000	27.69323	27.81515

Instruments for equation 1: policepc legalwage _cons

OLS by GMM I

·	. regres	s crime	ss crim	policepc	legalwage,	robus
---	----------	---------	---------	----------	------------	-------

Linear regres	sion				Number of obs F(2, 9997) Prob > F	= 10000 = 4422.19 = 0.0000
					R-squared	= 0.6092
					Root MSE	= 1.8032
crime	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
policepc legalwage _cons	4203287 -7.365905 27.75419	.0053653 .2411907 .0311075	-78.34 -30.54 892.20	0.000 0.000 0.000	4308459 -7.838688 27.69321	4098116 -6.893123 27.81517

IV and 2SLS

- For some variables, the assumption E[ε|x] = 0 is too strong and we need to allow for E[ε|x] ≠ 0
- If we have q variables z for which E[ε|z] = 0 and the correlation between z and x is sufficiently strong, we can estimate β from the population moment conditions

$$\mathsf{E}[\mathsf{z}(y-\mathsf{x}\beta)]=\mathbf{0}$$

- z are known as instrumental variables
- If the number of variables in z and x is the same (q = k), solving the the sample moment contions yield the MM estimator known as the instrumental variables (IV) estimator
- If there are more variables in z than in x (q > k) and we let $\mathbf{W} = \left(\sum_{i=1}^{N} \mathbf{z}'_{i} \mathbf{z}_{i}\right)^{-1}$ in our GMM estimator, we obtain the two-stage least-squares (2SLS) estimator

2SLS on crime data I

- The assumption that *E*[ε|policepc] = 0 is false if communities increase policepc in response an increase in crime (an increase in ε_i)
- The variables arrestp and convictp are valid instruments, if they measure some components of communities' toughness-on crime that are unrelated to ϵ but are related to policepc

• We will continue to maintain that $E[\epsilon|legalwage] = 0$

2SLS by GMM I

```
. gmm (crime - policepc*{b1} - legalwage*{b2} - {b3}), ///
> instruments(arrestp convictp legalwage ) nolog onestep
Final GMM criterion Q(b) = .001454
GMM estimation
Number of parameters = 3
Number of moments = 4
Initial weight matrix: Unadjusted Number of obs = 10000
Bobust.
```

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
/b1	-1.002431	.0455469	-22.01	0.000	-1.091701	9131606
/b2	-1.281091	.5890977	-2.17	0.030	-2.435702	1264811
/b3	30.0494	.1830541	164.16	0.000	29.69062	30.40818

Instruments for equation 1: arrestp convictp legalwage _cons

2SLS by GMM II

. ivregress 2s	ls crime lega	lwage (poli	cepc = a	rrestp c	onvictp) , rob	ust			
Instrumental variables (2SLS) regression Wald chi2(2) = 1891.83 Prob > chi2 = 0.0000 R-squared = . Root MSE = 3.216									
crime	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]			
policepc legalwage _cons	-1.002431 -1.281091 30.0494	.0455469 .5890977 .1830541	-22.01 -2.17 164.16	0.000 0.030 0.000	-1.091701 -2.435702 29.69062	9131606 1264811 30.40818			
Instrumented:	policepc								

Instruments: legalwage arrestp convictp

More complicated moment conditions

- The structure of the moment conditions for some model is too complicated to fit into the interactive syntax used thus far
- For example, Wooldridge (1999, 2002); Blundell, Griffith, and Windmeijer (2002) discuss estimating the fixed-effects Poisson model for panel data by GMM.
- In the Poisson panel-data model we are modeling

$$E[y_{it}|\mathbf{x}_{it},\eta_i] = \exp(\mathbf{x}_{it}\boldsymbol{\beta} + \eta_i)$$

 Hausman, Hall, and Griliches (1984) derived a conditional log-likelihood function when the outcome is assumed to come from a Poisson distribution with mean exp(**x**_{it}β + η_i) and η_i is an observed component that is correlated with the **x**_{it} • Wooldridge (1999) showed that you could estimate the parameters of this model by solving the sample moment equations

$$\sum_{i}\sum_{t}\mathbf{x}_{it}\left(\mathbf{y}_{it}-\mu_{it}\frac{\overline{\mathbf{y}}_{i}}{\overline{\mu}_{i}}\right)=\mathbf{0}$$

(日)

- These moment conditions do not fit into the interactive syntax because the term \$\overline{\mu}_i\$ depends on the parameters
- Need to use moment-evaluator program syntax

Moment-evaluator program syntax

 $\bullet\,$ An abreviated form of the syntax for gmm is

```
gmm moment_progam [if][in][weight],
equations(moment_cond_names)
parameters(parameter_names)
```

[instruments() options]

• The moment_program is an ado-file of the form

```
program gmm_eval
    version 11
    syntax varlist if, at(name)
    quietly {
        <replace elements of varlist with error
        part of moment conditions>
    }
end
```

```
program xtfe
    version 11
    syntax varlist if, at(name)
    quietly {
        tempvar mu mubar ybar
        generate double 'mu' = exp(kids*'at'[1,1] ///
                                                    111
            + cvalue*'at'[1,2]
            + tickets*'at'[1,3]) 'if'
        egen double 'mubar' = mean('mu') 'if', by(id)
        egen double 'ybar' = mean(accidents) 'if', by(id)
        replace 'varlist' = accidents
                                                    111
                               - 'mu'*'ybar'/'mubar' 'if'
    }
```

end

FE Poisson by gmm

```
. use xtaccidents
. by id: egen max_a = max(accidents )
. drop if max_a ==0
(3750 observations deleted)
. gmm xtfe , equations(accidents) parameters(kids cvalue tickets)
                                                                     111
                                                                     111
>
         instruments(kids cvalue tickets, noconstant)
         vce(cluster id) onestep nolog
>
Final GMM criterion Q(b) = 1.50e-16
GMM estimation
Number of parameters =
                      3
Number of moments
                         3
Initial weight matrix: Unadjusted
                                                      Number of obs =
                                                                          1250
```

(Std. Err. adjusted for 250 clusters in id)

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
/kids	4506245	.0969133	-4.65	0.000	6405711	2606779
/cvalue	5079946	.0615506	-8.25	0.000	6286315	3873577
/tickets	.151354	.0873677	1.73	0.083	0198835	.3225914

Instruments for equation 1: kids cvalue tickets

Using the gmm command

FE Poisson by xtpoisson, fe

. xtpoisson ad	ccidents kids	cvalue tick	ets, fe m	nolog			
Conditional fi	ixed-effects H	Poisson regr	ession	Number	of obs	=	1250
Group variable	e: id			Number	of group	s =	250
				Obs per	group:	min =	5
						avg =	5.0
						max =	5
				Wald ch	i2(3)	=	104.31
Log likelihood	d = -351.1173	39		Prob >	chi2	=	0.0000
accidents	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
kids	4506245	.0981448	-4.59	0.000	6429	848	2582642
cvalue	5079949	.0549888	-9.24	0.000	615	5771	4002188
tickets	. 151354	.0825006	1.83	0.067	0103	8442	.3130521

Bibliography

Blundell, Richard, Rachel Griffith, and Frank Windmeijer. 2002."Individual effects and dynamics in count data models," *Journal of Econometrics*, 108, 113–131.

Hausman, Jerry A., Bronwyn H. Hall, and Zvi Griliches. 1984. "Econometric models for count data with an application to the patents–R & D relationship," *Econometrica*, 52(4), 909–938.

Pearson, Karl. 1895. "Contributions to the mathematical theory of evolution—II. Skew variation in homogeneous material," *Philosophical Transactions of the Royal Society of London, Series A*, 186, 343–414.

Wooldridge, Jeffrey. 2002. *Econometric Analysis of Cross Section and Panel Data*, Cambridge, Massachusetts: MIT Press.

Wooldridge, Jeffrey M. 1999. "Distribution-free estimation of some nonlinear panel-data models," *Journal of Econometrics*, 90, 77–90.