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Goals

Learn about mixed models
We will work primarily with linear models
The syntax for generalized linear models is very similar

Start simple, build up more complex models
Random intercept
Random intercept and slope
Multilevel models
Crossed effects

Work with different error and random-effect covariance structures
along the way
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What are Linear Mixed Models?

Linear mixed models are a generalization of linear models
A standard linear model looks like

yi = β0 + β1xi1 . . . βpxip + εi

where 1 ≤ i ≤ n, the εi are normally distributed and uncorrelated
with each other (or the xij)
The β’s are considered to be fixed unknowns which must be
estimated together with σ2

In a mixed model, there are multiple groups (or panels or
individuals) and one or more β can vary across whatever
grouping is present

We see one particular realization of the random β’s in any one
dataset
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Upshot of a Mixed Model

Mixed models are called “mixed”, because the β’s are a mix of
fixed parameters and random variables

The terms “fixed” and “random” are being used in the
statistics-biostatistics sense:
A fixed coefficient is an unknown constant of nature
A random coefficient is one which varies from sample of groups to
sample of groups

The models can have some added complexity
Correlations between different random β’s
Multiple levels of nesting withing the groups

The random β are not estimated, though they can be predicted
We will run through some examples to show how these work in
Stata
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Introductory Example

Open up the jsp2 dataset downloaded earlier
. use jsp2

These are the London Education Authority Junior School Project
data as described in Mortimore et al.

A quick codebook command shows there are 48 different schools
and 887 different students with no missing values
. codebook
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A Partial Graph

Here is what the data look like for the first 10 schools
. do schoolgph

1

1

1

11

1

1

1
1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2
2

2

3

3

3

3
3

3 33

4

4

4
4

4

4

4

4
4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

5

5
5

5

5

5
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5 5

5

5

6
6

6
6

6

6

6

6

6

6

6
6

6

7

7

7

7

7

7

7

7
7

7

8

8

8

8

8

8

8

8

8

8

8

8
8

8
8

8

8

8
8

8

8

8

8

8

8

9

9
9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9
9

9

10

10

10

10

10
10

10

10

10

10

10

5

8

9

1
0

2
0

3
0

4
0

Y
e

a
r 

5
 s

c
o

re

−15 −10 −5 0 5 10

Year 3 score

JSP data for first 10 schools

More complex commands will be put in do-files to save typing
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Linear Regression

If all we would like is to predict 5th-year math scores from
3rd-year scores, we can run a simple linear regression
We should at least acknowledge that we have groups, as this
affects independence of errors across students
. regress math5 math3, vce(cluster school)
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Thinking about Better Models

If we believe that there are differences from school to school, we
should include this in the model
Here is a start:
math5ij = β0 + β1math3ij + ui + εij

Here, the i represents the school and j being the pupil within each
school

This model assumes schools add a random offset to 5th-year
scores
This is called a random-intercept model, because the intercept is
different from school to school, but the slope of the regression
line for each school is fixed at β1

We could think of β0 as random, or, as we have above, think of
an overall constant with a random offset for each school
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The mixed Command

The mixed command is made for linear mixed models
Here the general syntax for a single-level model such as this:

mixed fixed || grpvar: random , options
The random coefficients are implied by the grpvar
The coefficients in the random portion are the random effects
The options control variance structures and estimation methods,
for the most part
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Fitting the Random Intercept Model

For our model, math5 and math3 are fixed
The constant coefficient is allowed to vary across schools
So, the simplest syntax for the model is
. mixed math5 math3 || school:

Notice that because our random coefficient model is the constant
model, there are no terms specified

The constant model is the same as intercept-only model

We want to keep these results off to the side for a later test
. estimates store randint
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Extending the Model: Concept

A random-intercept model is a bit of an oversimplification
On average, the math5 school is different by the same amount for
all students at two different schools whose math3 scores match
This is regardless of the particular math3 itself
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Extending the Model: Picture

We can overlay a series of lines to see that slopes look different
from school to school
. do schslope
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Extending the Model: Formal Notation

If teaching were different from school to school, it would make
sense to have different slopes for each of the schools, also
Our formulation would then be

math5ij = β0 + β1math3ij︸ ︷︷ ︸
fixed

+ u0i + u1imath3ij︸ ︷︷ ︸
random

+εij

We will be able to test whether this extra complexity is needed
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Fitting a Random Slope Model

Telling Stata to fit this model is simple enough
We just need to say that the random portion has a slope for math3

Here is the command
. mixed math5 math3 || school: math3

We will want these results put aside also
. estimates store randslope
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Was the Added Complication Worthwhile?

We can run a likelihood ratio test to see if adding the extra
parameter was worthwhile
This is done with the lrtest command:
. lrtest randint randslope

The random-slope model is more worthwhile
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A Somewhat Unrealistic Situation

We have two random effects, now ui0 and ui1

By default, mixed assumes that they are independent
This is always unrealistic whenever the dependent variable is not
mean-centered

Small slopes will be associated with large (high) intercepts
Large slopes will be associsated with small (low) intercepts

It can also be unrealistic even if the dependent variable is
mean-centered

Bill Rising Multilevel Models



Introduction
Mixed Models

Conclusion

Fitting Mixed Models
Prediction
Nested Effects
Crossed Random Effects
Working with Residuals
Non-linear Models

Possible Covariance Structures

For us to state a dependence, we use the cov option
independent: (default) Each random effect has its own
variance; all are independent

Typical between multiple random effects
identity: All random effects share the same single variance; all
are independent

We’ll see the use for this below
exchangeable: All random effects share a single variance. All
share the same covariance with each other

Useful for nested intercept-only models
unstructured: All variances and covariances may be different

Typical for slope models
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Fitting with Covariances

Let’s use the unstructured covariance
. mixed math5 math3 || school: math3, cov(uns)

Notice now that there can be a correlation between the slopes
and the intercepts
Let’s store the estimates
. estimates store randslopex

Note: In general, when fitting random slope models, it makes
more sense to use the unstructured covariance than the
indepedent variance
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Picking a Model

Once again, we can test whether the added correlation estimate
was worthwhile

From the confidence interval, it appears that this is not the case

The command is similar to before
. lrtest randslope randslopex

As expected, it was worthwhile to include the correlation term
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Prediction

After fitting a model, we might want to get fitted values,
residuals, and the like
For mixed effects models, there is more to this than meets the eye

There needs to be a way to split fixed and random effects

The prediction is still done with predict, but there is now more
to think about
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Options for predict

Here is our model, again

math5ij = β0 + β1math3ij︸ ︷︷ ︸
fixed

+ u0i + u1imath3ij︸ ︷︷ ︸
random

+εij

Here are the options
xb predicts the fixed effects: β̂0 + β̂1math3ij
reffects estimates the random effects û0i and û1i

We need to specify 2 variables for our model (or use a wildcard)
These predict the empirical bayes estimates/BLUPs

reses estimates the standard errors for the random effects
fitted estimates β̂0 + β̂1math3ij + û0i + û1imath3ij
residuals estimates ε̂ij
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Showing the Effects of Random Effects, Preparation

We can predict the fitted values
. predict scorehat, fitted

Then sort
. sort school math3

Sorting ensures the observations are ascending within school
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Showing the Effects of Random Effects, Graphing

Here is a graph which gives the idea of the effects
. twoway line scorehat math3, connect(ascending)
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More Complex Models

Now we would like to look at two different types of mixed models
Models with nested effects
Models with crossed effects

We would also like to use more complex models for the error
terms
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Setup for a Three-level Model

Open up the following dataset
. use productivity, clear

Take a look at what it contains
. codebook

These are gross state products measured from 1970–1986, with
the 48 continental states nested within 9 regions
We would like to fit GSP as a function of some of the covariates,
making sure that we nest the states within regions
Note: Most of the measurements are stored as logarithms,
because we would really like to fit a multiplictative model

Bill Rising Multilevel Models



Introduction
Mixed Models

Conclusion

Fitting Mixed Models
Prediction
Nested Effects
Crossed Random Effects
Working with Residuals
Non-linear Models

Aside: Cobb-Douglas Production Function

Suppose we would like to model production P as a function
The Cobb-Douglas Production is a multiplicative model:

P = AKβ1Lβ2 exp(ε)

In this formulation, K is capital and L is labor resources

Taking logs turns this into a linear model

ln(P) = ln(A) + β1 ln(K ) + β2 ln(L) + ε

Here we’ll mimic the model Baltagi et al. (2001) used for Gross
State Products (GSPs)

We will be using logs to get a multiplicative model, split the
capital resources into multiple classifications
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Dataset and Model

We would like to fit the following model for the GSPs

gspijk = β0 + β1privateijk + · · · + β6unempijk + ui + vj(i) + εijk

for k = 1, 2, . . . , 17 annual measurements on j = 1, . . . ,Mi states
nested within i = 1, . . . , 9 regions
So we have 2 levels of random intercepts: one due to the regions,
and another due to the state within region
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Fitting the Model in Stata

We fit this as before with fixed and random portions, but we nest
the random portions from highest level down:
. mixed gsp private emp hwy water other unemp ///

|| region: || state:

There is no real added complication to fitting this model
We might want to treat the years as random effects, but they are
crossed with the regions
This brings us to the next topic—so we will come back to this
below
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Crossed Random Effects—Intro

Here is the situation and model—a common one in the econ
literature
Grunfeld (1958) analyzed data on 10 large U.S. corporations
collected annually from 1935 to 1954 to investigate how
investment (I ) depends on market value (M ) and capital stock
(C )
For this model, we would like random effects (intercepts) due to
firm and year. However, we want the year effect to be the same
across all firms, not nested within firms
This leads to the following model

Iij = β0 + β1Mij + β2Cij + ui + vj + εij

for i = 1, . . . , 10 firms measured over j = 1, . . . , 20 years
Bill Rising Multilevel Models
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Open Up the Dataset

Open up the dataset
. use grunfeld

Take a look at it
. codebook

Our variables have names which are more descriptive than the
usual one-letter abbreviations:

invest for investment (I )
mvalue for market value (M )
cstock for capital stock (C )
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A New Specification

Crossed effects mean there are no independent panels
This is done by specifying _all as the panel variable

This means that group-specific random effects need to be treated
as random coeffcients on indicator variables identifying each
group

This is done by using R.variable
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Leading Into the Crossed Model

Start by fitting a model which has only companies as the random
effects
. mixed invest mvalue cstock || company:

This is the same as taking the dataset as one big panel and
treating each company as nested within the superpanel and
forcing all the random effects to have the same variance
. mixed invest mvalue cstock || _all: R.company

This now points towards how to fit a crossed model:
Each higher level is nested within the previous level, so

Start with || _all: R.something
Repeat until the last term
The last term can be || lasthing:
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Fitting the Crossed Model

Life is easy here, because we have just two crossed terms
We can specify the model with 2 random intercepts following the
above schema
. mixed invest mvalue cstock ///

|| _all: R.company || year:

This is not only a nice touch, it saves a lot of computations over
the full specification
. mixed invest mvalue cstock ///

|| _all: R.company || _all: R.year

To save the most effort, put the factor with the most levels
second (as we did)
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Back to the State GNP model

We can now fit the productivity model without ignoring the years
entirely
Open up the productivity dataset again
. use productivity

Fit the model crossing years with regions, and nesting states
within regions
. mixed gsp private emp hwy water other unemp ///

|| _all: R.year || region: || state:
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Playing with Residuals

We will use exercise 3.5 from Rabe-Hesketh and Skrondal (2008),
which mimics a study by Dempster (1984) to look at the effect
of a drug on birthweights of rat pups
The weights of the pups depend on

Litter size and dosage (both at the litter level)
Sex of the pup (at the pup level)

Here are the data
. use rats

Take a look
. codebook
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A Picture of the Data

Here is a start of looking at the data
. graph matrix size dose female weight, half
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An Initial Model

We can start by fitting a standard random-intercept model

weightij = β0+β1dose1ij+β2dose2ij+β3sizeij+β4femaleij+ui+εij

for i = 1, . . . , 27 litters and j = 1, . . . ,nj pups within each litter
Here is the model
. mixed weight i.dose size female || litter: , base
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Looking at Residuals

We should peek at the residuals to see if there are any problems
Get the fixed portion
. predict fixed, xb

Get the residuals
. predict resid, residuals

Make a graph (next slide)
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The Residual vs. Fitted Plot

Here is the graph
. twoway scatter resid fixed, by(female)
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We might want to allow the variance of the residuals to vary by
sex Bill Rising Multilevel Models



Introduction
Mixed Models

Conclusion

Fitting Mixed Models
Prediction
Nested Effects
Crossed Random Effects
Working with Residuals
Non-linear Models

Allowing for Differing Variances

We would like to have different variances by sex
This is simple enough:

Tell Stata a structure for the residuals
Here it makes sense that the structure is independent
The full list of possible choices are independent (the default),
exchangeable, ar #, ma #, unstructured, exponential,
banded #, and toeplitz #
Use a by option within the variance structure to allow differing
variances

Here is the model
. mixed weight i.dose size female || litter: , ///

residuals(independent, by(female)) base
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Non-Linear Models

For general mixed effect effects models
mixed fits linear models
For binary data, Stata has the melogit command
For count data, Stata has the mepoisson command
More generally, Stata hs the meglm command for fitting
generalized linear mixed effect models

This is new in Stata 13

These all have pretty much the same syntax
The only differences are those which would be seen in the
differences between regress, logit or logistic, and poisson
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One Example for a Binary Response

We will mimic the analysis by Ng et al. (2006) of the 1989
Bangledesh fertility survey
Here are the data
. use bangladesh, clear

Take a look
. codebook

Data on contraception use as collected in 60 districts containing
both urban and rural areas
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A Binary Model Implementation

For woman j in district i, consider this model for
πij := Pr[cuseij = 1]:

logit(πij) = β0 + β1urbanij + β2ageij

+ β3child1ij + β4child2ij + β5child3ij + ui + viurbanij

The ui represent 60 district-specific random effects
The vi represent 60 district-specific effects of being from an urban
area In other words, for rural areas the “district effect” is ui ; for
urban areas it is ui + vi

We can use melogit to fit this model
. melogit c_use age urban child* ///

|| district: urban, cov(unstructured) or
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Aside: Numerical Integration

Evaluating the log likelihood requires integrating out the random
effects
The numerical integration has been sped up in Stata 13
Still, there are multiple intgration techniques which can be used

Mean-variance adaptive Gauss-Hermite quadrature
The default unless fitting a crossed random-effects model

Mode-curvature adaptive Gauss-Hermite quadrature,
Nonadaptive Gauss-Hermite quadrature, and
The Laplacian approximation (default for crossed random-effects
models).
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mixed fits linear mixed models
melogit and mepoisson fit two types of non-linear models
Other types of non-linear models are available including meglm
for multilevel generalized linear models
These can all both nested and crossed models
Error terms can be modelled
predict is used to get predictions and residuals after fitting a
model
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