
pystacked: Stacking generalization and
machine learning in Stata

Achim Ahrens (ETH Zürich)

Mark E Schaffer (Heriot-Watt University, IZA)
Christian B Hansen (University of Chicago)

Package website: https://statalasso.github.io/

Italian Stata Group Meeting

May 19, 2022

https://statalasso.github.io/

Introduction: Stacking
▶ The machine leaning (ML) toolbox includes a rich set of

flexible methods: regularized regression, random forests, SVM,
boosting, neural nets.

▶ When faced with a new prediction or classification task, it is a
priori rarely obvious which machine learner is best suited for a
particular task.

▶ Typical approach:
▶ Validating learner based on hold-out sample
▶ Cross-validation (K -fold, Leave-one-out, One-step ahead)

The underlying idea: Select one learner as the best.

1 / 21

Introduction: Stacking
This approach seems incomplete: combining several different
learners could improve performance.

The idea of stacking generalization, or simply stacking, is to
combine learners (Wolpert, 1992; Breiman, 1996).

General idea:
▶ Combine a set of “base” (or “level-0”) learners using a “final”

(or “level-1”) estimator.
▶ It is advisable to include a relatively large and diverse set of

base learners to capture different types of pattern in the data.
▶ Stacking also provides an effective framework for

hyper-parameter tuning.

2 / 21

Introduction: Stata’s ML tools
There is a growing number of programs for ML in Stata:
▶ lassopack for regularized regression (Ahrens, Hansen, and

Schaffer, 2020)
▶ rforest for random forests (Schonlau and Zou, 2020)
▶ svm for support vector machines (Guenther, 2016)
▶ Cerulli (2021) and Droste (2020) provide an interface to

scikit-learn (Pedregosa et al., 2011; Buitinck et al., 2013)
▶ mlrtime allows Stata users to make use of R’s parsnip

machine learning library (Huntington-Klein, 2021)

Our contribution: We complement these programs by offering a
package that can be used to fit a wide range of machine learners,
and for stacking.

3 / 21

Introducing pystacked
We introduce pystacked for stacking regression and binary
classification in Stata.
▶ pystacked allows to fit multiple machine learning algorithms

via Python’s scikit-learn (Pedregosa et al., 2011; Buitinck
et al., 2013)1 and combine these into one final prediction as a
weighted average of individual predictions.

▶ pystacked can also be used to fit a single machine learner
and thus provides an easy-to-use and versatile API to
scikit-learn’s machine learning algorithms.

▶ Our main motivation for developing pystacked: Use it in
combination with Double-Debiased Machine Learning
(Chernozhukov et al., 2018)

⇒ Second talk

1We stress that pystacked relies on scikit-learn and the on-going work of the scikit-learn contributors. We
thus suggest that users cite scikit-learn along with this article when using pystacked.

4 / 21

Stacking regression
Which machine learner should we use?

We don’t know whether we have a sparse or dense problem; linear
or non-linear; etc.

Stacking is an ensemble method that combines multiple base
learners into one model. As the default, we use non-negative least
squares:

w = arg min
wj ≥0

n∑
i=1

yi −
J∑

j=1
wj ŷ (j)

i

2

,

where ŷ (j)
i are cross-validated predictions of base learner j .

Voting regression is a special case with unweighted (or
user-specified) weights.

5 / 21

Stacking regression
1. Cross-validation:

1.1 Split the data randomly into K partitions of approximately
equal size. These partitions are referred to as folds. Denote
the set of observations in fold k as Ik , and its complement as
Ic
K such that Ic

K = {1, ..., n}/Ik . Ik constitutes the validation
set and Ic

k the training sample.
1.2 For each fold k = 1, . . . , K and each base learner j = 1, . . . , J ,

fit machine learner j to the training data Ic
k and obtain

out-of-sample predicted values ŷ (j)
i for i ∈ Ik .

2. Final learner: Fit the final learner to the full sample. The default
choice is non-negative least squares (NNLS):

min
w1,...,wJ

n∑
i=1

(
yi −

J∑
j=1

wj ŷ (j)
i

)2

s.t. wj ≥ 0.

The weights are standardized to sum to 1 after estimation, i.e.,
ˆ̂wj = ŵj/

∑
j ŵj . The stacking predicted values are defined as

ŷ⋆
i =

∑
j ˆ̂wj ŷ (j)

i .
6 / 21

pystacked overview
pystacked implements stacking regression (Wolpert, 1992) via
scikit learn’s StackingRegressor and StackingClassifier.

Main features:
▶ Two alternatives syntaxes
▶ 10+ different machine learners supported that can be used

stand-alone or as base learners in combination with stacking
▶ Regression+classification
▶ Graphing and plotting features
▶ Supports central scikit-learn learn pipelines
▶ Supports sparse matrices and parallelization

7 / 21

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html

(Base) Machine learners
method() type() Machine learner description
ols regress Linear regression
logit class Logistic regression
lassoic regress Lasso with AIC/BIC penalty
lassocv regress Lasso with CV penalty

class Logistic lasso with CV penalt
ridgecv regress Ridge with CV penalty

class Logistic ridge with CV penalty
elasticcv regress Elastic net with CV penalty

class Logistic elastic net with CV
svm regress Support vector regression

class Support vector classification
gradboost regress Gradient boosting regressor

class Gradient boosting classifier
rf regress Random forest regressor

class Random forest classifier
linsvm class Linear SVC
nnet regress Neural net

class Neural net

Note: The first two columns list all allowed combinations of method(string) and type(string), which are used to
select base learners. Column 3 provides a description of each machine learner. ‘CV penalty’ indicates that the penalty
level is chosen to minimize the cross-validated MSPE. ‘AIC/BIC penalty’ indicates that the penalty level minimizes
either either the Akaike or Bayesian information criterion. SVC refers to support vector classification.

8 / 21

Main syntax
Syntax 1:

pystacked depvar predictors
[

if
] [

in
] [

, methods(string)

cmdopt1(string) cmdopt2(string) ... cmdopt10(string)

pipe1(string) pipe2(string) ... pipe10(string)

xvars1(predictors) xvars2(predictors) ... xvars10(predictors)
general_options

]
Notes:
▶ methods(string) is used to select base learners, where string is a

list of base learners.
▶ Options are passed on to base learners via cmdopt1(string),

cmdopt2(string) to cmdopt10(string).
▶ pipe*(string) are for pipelines; xvars*(predictors) allows to

specify a learner-specific variable lists of predictors.
▶ Limitation: only 10 base learners supported.

9 / 21

Main syntax
Syntax 2:

pystacked depvar
[

indepvars
]

|| method(string) opt(string)
pipe(string) xvars(predictors)

[
|| method(string) opt(string)

pipe(string) xvars(predictors) ... ||
] [

if
] [

in
] [

,

general_options
]

Notes:
Base learners are added before the comma using method(string)
along with further learner-specific settings and separated by ‘||’.

10 / 21

Pipelines and learner-specific predictors
Pipelines

scikit-learn uses pipelines to pre-preprocess input data on the fly.
In pystacked, pipelines can be used to impute missing values,
create polynomials and interactions, and to standardize predictors.

Learner-specific predictors

▶ By default, pystacked uses the same set of predictors for
each base learner.

▶ This is often not desirable: For example, when using linear
machine learners such as the lasso adding polynomials,
interactions and other transformations of the base set of
predictors might greatly improve out-of-sample prediction
performance.

▶ Solution: Use pipelines or xvars*(predictors)

11 / 21

Demonstration 1: Single base learner
We import the California house price data from Pace and Barry
(1997), and split the sample randomly into training and validation
partition using a 75/25 split. The aim of the prediction task is to
predict median house prices (medhousevalue) using a set of house
price characteristics

. clear all

. use https://statalasso.github.io/dta/cal_housing.dta, clear

. set seed 42

. gen train=runiform()

. replace train=train<.75
(20,640 real changes made)
. replace medh = medh/10e3
variable medhousevalue was long now double
(20,640 real changes made)
. label var medh

12 / 21

Demonstration 1: Single base learner
The option method(gradboost) selects gradient boosting. We
will later see that we can specify more than one learner in
methods(), and that we can also fit gradient boosted classification
trees.

. pystacked medh longi-medi if train, type(reg) methods(gradboost)
Single base learner: no stacking done.
Stacking weights:

Method Weight

gradboost 1.0000000
. predict double yhat_gb1 if !train

The output shows the stacking weights associated with each base
learner. Since we only consider one method, the output is not
particularly informative and simply shows a weight of one for
gradient boosting. Yet, pystacked has fitted 100 boosted trees
(the default) in the background!

13 / 21

Demonstration 1: Single base learner
Here, we compare lasso with and without the poly2 pipeline:

. pystacked medh longi-medi if train, type(reg) methods(lassocv)
Single base learner: no stacking done.
Stacking weights:

Method Weight

lassocv 1.0000000
. predict double yhat_lasso1 if !train
.
. pystacked medh longi-medi if train, type(reg) methods(lassocv) ///
> pipe1(poly2)
Single base learner: no stacking done.
Stacking weights:

Method Weight

lassocv 1.0000000
. predict double yhat_lasso2 if !train

14 / 21

Demonstration 2: Stacking regression
We now consider a stacking regression application with five base
learners:

1. linear regression,
2. lasso with penalty chosen by cross-validation,
3. lasso with second order polynomials and interactions,
4. random forest with default settings,
5. gradient boosting with a learning rate of 0.01 and 1000 trees.

15 / 21

Demonstration 2: Stacking regression
Syntax 1:

. set seed 42

. pystacked medh longi-medi if train, ///
> type(regress) ///
> methods(ols lassocv lassocv rf gradboost) ///
> pipe3(poly2) cmdopt5(learning_rate(0.01) ///
> n_estimators(1000))
Stacking weights:

Method Weight

ols 0.0000000
lassocv 0.0000000
lassocv 0.4687747
rf 0.2508847
gradboost 0.2803406

16 / 21

Demonstration 2: Stacking regression
Syntax 2:

. set seed 42

. pystacked medh longi-medi || ///
> m(ols) || ///
> m(lassocv) || ///
> m(lassocv) pipe(poly2) || ///
> m(rf) || ///
> m(gradboost) opt(learning_rate(0.01) n_estimators(1000)) ///
> if train, type(regress)
Stacking weights:

Method Weight

ols 0.0000000
lassocv 0.0000000
lassocv 0.4687747
rf 0.2508847
gradboost 0.2803406

17 / 21

Demonstration 2: Stacking regression
Predicted values. In addition to the stacking predicted values, we
can also get the predicted values of each base learner using the
transform option:

18 / 21

Demonstration 2: Stacking regression
Plotting. The graph option creates a scatter plot of predicted
versus observed values for stacking and each base learner:

0
20

40
60

0 10 20 30 40 50
medhousevalue

STACKING

0
20

40
60

80

0 10 20 30 40 50
medhousevalue

weight = 0.000
Learner: ols

0
20

40
60

80

0 10 20 30 40 50
medhousevalue

weight = 0.000
Learner: lassocv

-4
0

-2
0

0
20

40
60

0 10 20 30 40 50
medhousevalue

weight = 0.469
Learner: lassocv

0
10

20
30

40
50

0 10 20 30 40 50
medhousevalue

weight = 0.251
Learner: rf

0
20

40
60

0 10 20 30 40 50
medhousevalue

weight = 0.280
Learner: gradboost

Out-of-sample Predictions

Figure: Out-of-sample predicted values and observed values created using
the graph option after stacking regression.

19 / 21

Demonstration 2: Stacking regression
MSPE table. The table option allows to compare stacking
weights with in-sample and out-of-sample MSPE. As with the
graph option, we can use table as a post-estimation command:

. pystacked, table holdout
Number of holdout observations: 5192
MSPE: In-Sample and Out-of-Sample

Method Weight In-Sample Out-of-Sample

STACKING . 4.793 5.472
ols 0.000 6.986 6.853
lassocv 0.000 6.986 6.855
lassocv 0.469 6.613 6.564
rf 0.251 1.847 4.963
gradboost 0.280 5.312 5.511

20 / 21

Summary
▶ pystacked implements stacked generalization (Wolpert,

1992) for regression and binary classification via Python’s
scikit-learn.

▶ Stacking combines multiple supervised machine learners—the
“base” or “level-0” learners—into a single learner.

▶ The currently supported (base) machine learners include
regularized regression, random forest, gradient boosting,
support vector machines and feed-forward neural nets
(multi-layer perceptron).

▶ pystacked can also be used with as a ‘regular’ machine
learning program to fit a single base learner and, thus,
provides an easy-to-use API for scikit-learn’s machine learning
algorithms.

21 / 21

References I
Ahrens, Achim, Christian B. Hansen, and Mark E. Schaffer (2020).
“lassopack: Model selection and prediction with regularized regression
in Stata”. In: The Stata Journal 20.1, pp. 176–235. url:
https://doi.org/10.1177/1536867X20909697.
Breiman, Leo (July 1996). “Stacked regressions”. en. In: Machine
Learning 24.1, pp. 49–64. url:
http://link.springer.com/10.1007/BF00117832 (visited on
12/04/2021).
Buitinck, Lars et al. (2013). “API design for machine learning
software: experiences from the scikit-learn project”. In: ECML PKDD
Workshop: Languages for Data Mining and Machine Learning,
pp. 108–122.
Cerulli, Giovanni (2021). Machine Learning using Stata/Python.

https://doi.org/10.1177/1536867X20909697
http://link.springer.com/10.1007/BF00117832

References II
Chernozhukov, Victor et al. (2018). “Double/debiased machine
learning for treatment and structural parameters”. In: The
Econometrics Journal 21.1. tex.ids= Chernozhukov2018a publisher:
John Wiley & Sons, Ltd (10.1111), pp. C1–C68. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097.
Droste, Michael (2020). pylearn.
https://github.com/NickCH-K/MLRtime/. [Online; accessed
02-December-2021].
Guenther, N. (2016). “Support vector machines”. In: Stata Journal
16.4, 917–937(21). url:
www.stata-journal.com/article.html?article=st0461.
Huntington-Klein, Nick C. (2021). mlrtime.
https://github.com/mdroste/stata-pylearn/. [Online;
accessed 02-December-2021].

https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097
https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097
https://github.com/NickCH-K/MLRtime/
www.stata-journal.com/article.html?article=st0461
https://github.com/mdroste/stata-pylearn/

References III
Pace, R. Kelley and Ronald Barry (1997). “Sparse spatial
autoregressions”. In: Statistics & Probability Letters 33.3,
pp. 291–297. url: https://www.sciencedirect.com/science/
article/pii/S016771529600140X.
Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in
Python”. In: Journal of Machine Learning Research 12,
pp. 2825–2830.
Schonlau, Matthias and Rosie Yuyan Zou (2020). “The random
forest algorithm for statistical learning”. In: The Stata Journal 20.1,
pp. 3–29. url: https://doi.org/10.1177/1536867X20909688.
Wolpert, David H. (1992). “Stacked generalization”. In: Neural
Networks 5.2, pp. 241–259. url: https://www.sciencedirect.
com/science/article/pii/S0893608005800231.

https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://www.sciencedirect.com/science/article/pii/S016771529600140X
https://doi.org/10.1177/1536867X20909688
https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://www.sciencedirect.com/science/article/pii/S0893608005800231

	Appendix
	References

