
Introduction
Frames

Report Generation Additions
Conclusion

Stata 16 — Under the Hood

Bill Rising

StataCorp LLC

2019 Italian Stata Users Group Meeting
26 September 2019

Firenze

Frames and Documents Handout page: 1



Introduction
Frames

Report Generation Additions
Conclusion

Goals

Goals

Learn the basics of the frames feature in Stata 16
See what is new in report generation, aka dynamic documents

Frames and Documents Handout page: 1



Introduction
Frames

Report Generation Additions
Conclusion

Goals

Methods

For frames, it will be easy to demonstrate commands and capture
their output
For the dynamic documents, demonstrating commands is fine,
but the output are documents, so the presentation will become
much less definite
We’ll be working in a series of folders which correspond to each
of the topics

If you copied the italy19_rising.zip folder and expanded the
files

Make the resulting folder your working directory

The examples here will work relative to that directory

Frames and Documents Handout page: 1



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Frames in Stata 16

Frames were introduced in Stata 16
At their simplest, they are a way to have multiple datasets open
at once
They are also something which acts like merge

But they can save space

Lastly, there are some things which get sped up because of frames

Frames and Documents Handout page: 2



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Basics of Frames

Think of a frame as a place to hold data
The data can be in a dataset or simply in the frame

Each frame has an internal Stata name
The first frame, which exists when you start Stata, is called
default, by default

Frames and Documents Handout page: 2



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Starting Simple: Frames for Multiple Datasets

First, go to the frames folder
. cd frames

Open a dataset
. use visit_info

Create a second frame
. frame create patients

Open another dataset in that other frame
. frame patients: use patient_info

Frames and Documents Handout page: 2



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Glancing at the Datasets

Open the data editor, to see the dataset
. edit

Switch back and forth between frames via cwf
. cwf patients

Or switch back and forth using frame change
. frame change default

Or switch back and forth using the frames dialog
. db frames

Frames and Documents Handout page: 2



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Changing Frame Names

The default frame has a forgetable name in our case
it forces us to remember which dataset has this special status

We can change the name of the default frame name to
something more informative
. frame rename default visits

We can then look at what frames we have
. frame dir

The numbers given are observations × variables
Or if you prefer rows × columns

Frames and Documents Handout page: 3



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Linking Datasets Using Frames

It would make sense to combine the information in the
visit_info and patient_info datasets

This is normally a task for the merge command

Instead of using merge, you can link together datasets in frames
This can be good for very long datasets
It has some other advantages (and disadvantages)

Frames and Documents Handout page: 3



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

How to Link

The possible link types are 1:1 and m:1

There is fine; the 1:m really is not needed because all that need be
done is to switch the active frame

In this example there can be multiple visits per patient, so we
need to have the visits frame active
. cwf visits

Now we can link on patid
. frlink m:1 patid, frame(patients)

Frames and Documents Handout page: 3



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Upshot of Linking

A new variable gets created in the dataset in the active frame
By default, this is named after the frame which was linked

You can tell indirectly which observations matched up in the
active frame

Those which matched have non-missing values for the linking
variable
Those which did not match up with data in the linked dataset
have missing variables for the linking variable

You cannot tell which observations did not match in the linked
frame

This is similar to having _merge values of 1 and 2 only

Frames and Documents Handout page: 4



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Using Variables from a Linked Frame

The frval() function allows you to use values from a variable in
the linked frame without actually copying the variable into the
current frame

Which saves space if the active frame is long

We could list all the visits from the female patients
. list patid-doctor if frval(patients,gender)=="Female"

This function can be used in any exp anywhere
. gen ins_diff = insurance!=frval(patients,insurance)

This shows where the insurance differs in the two datasets
. list patid visitdt insurance if ins_diff

Frames and Documents Handout page: 4



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Adding Variables from a Linked Frame

You can bring over variables from a linked dataset
. frget birthdate, from(patients)

frget copies the data as well as all metadata from the linked
variable
This is similar to
. merge m:1 patid using patient_info, keepusing(birthdate)

As it turns out, linking has better behavior for value labels, as we
will see

This is good for computing age
. do genage

Here are the ages
. list patid visitdt birthdate age

Frames and Documents Handout page: 5



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Adding a Variable Whose Name Exists

If you want to bring over a variable whose name matches one of
the variable names in the active frame

You can generate a new variable with a different name
. frget pat_insurance = insurance, from(patients)

You can use a prefix or a suffix
. frget insurance, from(patients) prefix(another_)

If you don’t try to change the conflicting name, you will get an
error

Frames and Documents Handout page: 5



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Good Value Label Behavior

If the variable you bring over has a value label
If the value label does not exist in the active frame, the value
label comes over
If the value label exists in the activer frame and the definitions
match, then nothing need be done
If the value label exists in the activer frame and the definitions do
not match, then the brought-over value label gets renamed

This is better behavior than with merge, which simply issues a
warning

Frames and Documents Handout page: 6



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Running Commands in Another Frame

In this example, the value label instype exists in both datasets
It would be good to look at the definitions
We would like to do this without having to switch back and forth
between frames

In the visits frame, which is active
. label list instype

In the patients dataset
. frame patients: label list instype

Ignoring that the visits frame is active
. frame visits: label list instype

In any case, we can see that the value labels are all defined well

Frames and Documents Handout page: 6



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Opening a Dataset with Conflicts

Suppose our patient_info dataset were not quite so nice
The patient_ohno dataset fits this bill

We will want to link to this

Let’s look at it the frames way
First create a frame
. frame create ohno

Now open up the dataset in that frame
. frame ohno: use patient_ohno

And look at it
. frame ohno: codebook

Frames and Documents Handout page: 6



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Things to Note

The patid is now called just id
The insurance variable is encoded differently, but still has the
instype value label

This would be a big problem when using merge, update

Frames and Documents Handout page: 8



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Linking to Dataset with Differing Key Names

We can still use frlink to link to a dataset where the key
variables have different names

Key: variable list which identifies individual variables in one
dataset

To do this, we must specify the keyvarlist in the frame()
option
. frlink m:1 patid, frame(ohno id)

Frames and Documents Handout page: 8



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Avoiding A Dangerous Data Error

Just to drive home the point, check that the instype value
labels differ

First in the active frame
. label list instype

Now in the linked dataset
. frame ohno: label list instype

Try to bring in the insurance variable from the ohno frame
. frget insurance, from(ohno) prefix(ohno_)

Look at the value labels
. label list

Stata renamed the value label from frget to avoid a data error!
This is better behavior than in merge

Frames and Documents Handout page: 8



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Notes about Linking

You can use frget to grab many variables from the linked
dataset

frget varlist . . .

You could grab all but some variables by using the exclude()
option

frget _all, exclude(notthisvarlist)

This is like using the keepusing() option in merge except that
it allows excluding instead of just including variables

Frames and Documents Handout page: 9



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Static Linking Requires Care

Changing the key in the active frame is dangerous!
Here is such a dangerous change
. replace patid = 9 if patid == 4 & visitdt==mdy(10,19,2015)

Now go and get the gender variable
. frget gender, from(patients)

Because the linking is static, you can get odd results
. tabulate patid gender

Frames and Documents Handout page: 9



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Rebuilding Links

If you are unsure of the state of the links, you should rebuild them
. frlink rebuild patients

Now go and grab the gender variable again
. drop gender
. frget gender, from(patients)

Now there are no problems
. tabulate patid gender

Frames and Documents Handout page: 10



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Clearing out

The equivalent to clear for frames is
. clear frames

This gets rid all data and frames and changes the active frame
name to default:
. frames dir

frames reset is a synonym

In case you wondered, clear all runs a clear frames

Frames and Documents Handout page: 10



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Frames as Holding Areas

You can also use frames for holding data
In this case, they are something of a substitute for temporary files
They are also faster, especially in networked environments

frput will copy data to another frame
The opposite of frget

frcopy will copy an entire frame to another frame
It will also create the frame to use the copy, making it a nice
manual preserve

frame post can be used to post observations
Similar to post, but without tmp files

Frames and Documents Handout page: 10



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

preserve and Frames

The preserve command now uses frames for preserving in
Stata/MP

This happens for files under 1GB by default
The maximum size can be changed using set max_preservemem

This speeds up commands which use preserve heavily
grexample for looking at graph examples

This is especially useful when on a network where temporary files
end up being stored on a server, instead of locally

Frames and Documents Handout page: 11



Introduction
Frames

Report Generation Additions
Conclusion

Basic Frames
Linking Frames
Copying, Putting, and Posting
Side Gains from Frames

Linking Many Datasets

You can have up to 100 frames at once
This means you can link together 100 datasets if need be
This could be useful in very wide datasets

Frames and Documents Handout page: 11



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Report Generation Additions

The report generation (aka dynamic document) tools have been
extended
dyndoc now has a docx option which produces a docx document
directly from markdown
putdocx has many additions for headers and footers, as well as a
way to make narrative easier to use
html2docx converts web pages (html) to Microsoft Word
compatible documents (docx)
docx2pdf converts docx files to pdf files
There are a few other additions; these are the ones we’ll look at

Frames and Documents Handout page: 11



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Getting Started

We’ll start with the docx option for dyndocx
Let’s move to the proper location
. cd ../dyndoc

Frames and Documents Handout page: 12



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Looking at a dyndoc file

Take a look at the paper.md file
. doedit paper.md

This is an example markdown file using Stata’s dynamic tags
You can see that Stata 16 now has syntax highlighting for
markdown
The md extension is what alerted the Do-file Editor to use this
highlighting
You can change the language being highlighted

Note that the dyndoc version has changed to 2

Frames and Documents Handout page: 12



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Making an html file

As in Stata 15, this can be turned into a webpage
. dyndoc paper.md

The output is not shown, because it would include all the output
needed to make the html file

We can click on the link to open the page

Frames and Documents Handout page: 12



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Converting to docx

We could then convert this to a docx file
. html2docx paper.html, saving(paper_conv.docx)

Clicking the link will open the docx file in Microsoft Word
The resulting file needs some fixing up, but we’ll do this later

Frames and Documents Handout page: 12



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Going Directly from Markdown to docx

We could get the same result by using the new docx option for
dyndoc
. dyndoc paper.md, docx

Again, the output is not shown

This will look exactly like the preceding example, because in the
background, Stata is running plain dyndoc then running
html2docx

Generally, this worked well
There is some wrapping of Stata output, however
This is not present here, but there are other html-only things, like
special characters, which might need cleaning up

Frames and Documents Handout page: 12



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Tidying Up Wrapping

Doing this conversion is nice, but it sometimes needs some
tidying up due to wrapping

The font size of 10pt for the fixed-width font allows 77 characters
per line for letter size paper with standard one-inch margins
If your Stata window is wide, commands like describe and
codebook will draw dashed line the entire width of the your
window

There are a few things which can help
Use a set linesize command to set the linesize to 90 or less
Change the margins in the resulting docx document
Make a style sheet (css) for the document and «dd_include» the
style sheet

See the first example in the dyndoc PDF documentation

Frames and Documents Handout page: 13



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Working With putdocx

The files for putdocx are in the putdocx folder
. cd ../putdocx

First take a look at how putdocx looked in Stata 15
. doedit putdocx15.do

You can see here that there is no narrative mode
Everything is a Stata command

You also cannot put Stata code into the document without
repeating it

Once as simple text in a fixed-width font
Once as code that gets run

Frames and Documents Handout page: 13



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Making the docx Document

Doing the do-file will make a docx document
. do putdocx15.do

On the Mac, you can open the resulting file from the Command
window
. ! open putdocx15.docx

Frames and Documents Handout page: 13



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

New putdocx Features in Stata 16

Stata 16 allows headers and footers
Headers and footers can change through the document with
sections
Headers and footers can work across appending files
There is now something like a narrative mode
Open up putdocx16.do to see these
. doedit putdocx16.do

Frames and Documents Handout page: 13



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Headers and Footers to Start

They get constructed in a couple of steps
Here are the steps for a footer

Use putdocx begin, footer(name) to name the footer
Use putdocx paragraph, tofooter(name)
Then add to the paragraph

Using tables is good for multi-piece footers

For headers, simply use header in place of footer above

Frames and Documents Handout page: 14



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Headers and Footer Changes

When sections change, you can change the header and/or footer
Simply use putdocx sectionbreak in place of putdocx begin
from above

Frames and Documents Handout page: 14



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Narrative Mode

While putdocx is mostly all Stata command as before, there are
now text blocks:

putdocx textblock begin starts a new paragraph which is
simply text
putdocx textblock append appends to the current paragraph
putdocx textblock end ends a text block
putdocx textfile allows inserting a file as a text block

These should make documents with a lot of plain narrative (i.e.
most documents) much easier to work with

Frames and Documents Handout page: 14



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Making the docx Document

Doing the do-file will make a docx document
. do putdocx16.do

Open the resulting file from the Command window
. ! open putdocx16.docx

Frames and Documents Handout page: 14



Introduction
Frames

Report Generation Additions
Conclusion

Report Generation Additions

Other Changes

While these are most of the changes, there have also been a few
changes to

markdown, which goes from markdown to html without processing
Stata code
putexcel had 2 syntax changes

putexcel close has become putexcel save
putexcel has changed picture() to image()
Of course, version conrol will protect your Stata 15.1 and earlier
do-files!

Frames and Documents Handout page: 14



Introduction
Frames

Report Generation Additions
Conclusion

Conclusion

Conclusion

Frames are something brand new in Stata 16
The dynamic document (aka report) generation has had some
nice additions

Frames and Documents Handout page: 15


	Introduction
	Goals

	Frames
	Basic Frames
	Linking Frames
	Copying, Putting, and Posting
	Side Gains from Frames

	Report Generation Additions
	Report Generation Additions

	Conclusion
	Conclusion


