Stata 16 — Under the Hood

Bill Rising
StataCorp LLC

2019 Italian Stata Users Group Meeting
26 September 2019

Firenze

Contents

1 Introduction 1
1.1 Goals . . . e e, 1

2 Frames 2
2.1 Basic Frames s 2
2.2 Linking Frames L 3
2.3 Copying, Putting, and Posting 10
2.4 Side Gains from Frames L 10

3 Report Generation Additions 11
3.1 Report Generation Additions 11

4 Conclusion 14
4.1 Conclusion e 14

1 Introduction

1.1 Goals

Goals

= Learn the basics of the frames feature in Stata 16

= See what is new in report generation, aka dynamic documents

Methods

= For frames, it will be easy to demonstrate commands and capture their output

= For the dynamic documents, demonstrating commands is fine, but the output are documents, so the presentation
will become much less definite

= We'll be working in a series of folders which correspond to each of the topics
o If you copied the italy19_rising.zip folder and expanded the files

* Make the resulting folder your working directory

o The examples here will work relative to that directory

2 Frames
2.1 Basic Frames
Frames in Stata 16

= Frames were introduced in Stata 16

= At their simplest, they are a way to have multiple datasets open at once

They are also something which acts like merge

© But they can save space

Lastly, there are some things which get sped up because of frames

Basics of Frames
= Think of a frame as a place to hold data
o The data can be in a dataset or simply in the frame
» Each frame has an internal Stata name

¢ The first frame, which exists when you start Stata, is called default, by default

Starting Simple: Frames for Multiple Datasets
= First, go to the frames folder
. cd frames
= Open a dataset
. use visit_info
= Create a second frame
. frame create patients
= Open another dataset in that other frame

. frame patients: use patient_info

Glancing at the Datasets
= Open the data editor, to see the dataset
. edit

Switch back and forth between frames via cwf

. cwf patients
= Or switch back and forth using frame change
. frame change default
= Or switch back and forth using the frames dialog

. db frames

Stata 16 — Under the Hood © StataCorp LLC Page 2 of 15

Changing Frame Names
= The default frame has a forgetable name in our case
o it forces us to remember which dataset has this special status

= We can change the name of the default frame name to something more informative
. frame rename default visits
= We can then look at what frames we have

. frame dir

patients 4 x 4; patient_info.dta
visits 9 x 5; visit_info.dta

¢ The numbers given are observations x variables

o Or if you prefer rows x columns

2.2 Linking Frames
Linking Datasets Using Frames
= It would make sense to combine the information in the visit_info and patient_info datasets
¢ This is normally a task for the merge command
= Instead of using merge, you can link together datasets in frames

¢ This can be good for very long datasets

o It has some other advantages (and disadvantages)

How to Link

= The possible link types are 1:1 and m: 1

¢ There is fine; the 1:m really is not needed because all that need be done is to switch the active frame

= In this example there can be multiple visits per patient, so we need to have the visits frame active

. cwf visits
= Now we can link on patid
. frlink m:1 patid, frame(patients)

(3 observations in frame visits unmatched)

Upshot of Linking
= A new variable gets created in the dataset in the active frame
¢ By default, this is named after the frame which was linked
= You can tell indirectly which observations matched up in the active frame

¢ Those which matched have non-missing values for the linking variable

¢ Those which did not match up with data in the linked dataset have missing variables for the linking variable
= You cannot tell which observations did not match in the linked frame

¢ This is similar to having _merge values of 1 and 2 only

Stata 16 — Under the Hood © StataCorp LLC Page 3 of 15

Using Variables from a Linked Frame

= The frval () function allows you to use values from a variable in the linked frame without actually copying the

variable into the current frame
& Which saves space if the active frame is long

= We could list all the visits from the female patients

. list patid-doctor if frval(patients,gender)=="Female"

| patid visitdt illness insura~e
|- e
1. | 9 0boct2015 Cold HDHP
3. | 1 200ct2015 Pneu
7.1 9 29dec2015 Flu .
9. | 9 23feb2016 Sore Throat HMO

Smith |

+— —_ —_ —_

= This function can be used in any exp anywhere

——+

. gen ins_diff = insurance!=frval(patients,insurance)

o This shows where the insurance differs in the two datasets

. list patid visitdt insurance if ins_diff

e et Lt +
| patid visitdt insura-~e |
|-~ ———mmmmmm— o |
1. | 9 050ct2015 HDHP |
3. | 1 200ct2015 |
4. | 25 12nov2015 PPO |
5. | 4 15nov2015 o
6. | 25 30nov2015 PPO |
|-~ ———mmmm— - |
7.1 9 29dec2015 O
8. | 616 18jan2016 HMO |
o +

Adding Variables from a Linked Frame
= You can bring over variables from a linked dataset

. frget birthdate, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

» frget copies the data as well as all metadata from the linked variable

= This is similar to

. merge m:1 patid using patient_info, keepusing(birthdate)

o As it turns out, linking has better behavior for value labels, as we will see

= This is good for computing age
. do genage

. gen age = year(visitdt) - year(birthdate) ///
> - (31*month(visitdt)+day(visitdt) ///

> < 31x*month(birthdate)+day(birthdate))

(3 missing values generated)

end of do-file

Stata 16 — Under the Hood © StataCorp LLC

Page 4 of 15

= Here are the ages

. list patid visitdt birthdate age

e +
| patid visitdt birthdate age |
I- st |
1. | 9 050ct2015 15jun1987 28 |
2. | 4 190ct2015 28may1998 17 |
3. 1 200ct2015 18nov2003 11 |
4. | 25 12nov2015 . .
5.1 4 15nov2015 28may1998 17 |
I- ittt |
6. | 25 30nov2015 . .
7.1 9 29dec2015 15jun1987 28 |
8. | 616 18jan2016 . .
9. | 9 23feb2016 15jun1987 28 |
e R +

Adding a Variable Whose Name Exists
= If you want to bring over a variable whose name matches one of the variable names in the active frame

< You can generate a new variable with a different name
. frget pat_insurance = insurance, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

o You can use a prefix or a suffix
. frget insurance, from(patients) prefix(another_)

(3 missing values generated)
(1 variable copied from linked frame)

o If you don't try to change the conflicting name, you will get an error

Good Value Label Behavior
» [f the variable you bring over has a value label

o If the value label does not exist in the active frame, the value label comes over
o If the value label exists in the activer frame and the definitions match, then nothing need be done

o If the value label exists in the activer frame and the definitions do not match, then the brought-over value
label gets renamed

* This is better behavior than with merge, which simply issues a warning

Running Commands in Another Frame
= In this example, the value label instype exists in both datasets
= |t would be good to look at the definitions
= We would like to do this without having to switch back and forth between frames

¢ In the visits frame, which is active

. label list instype

Stata 16 — Under the Hood © StataCorp LLC Page 5 of 15

instype:
1 HDHP
2 HMO
3 PPO

¢ In the patients dataset
. frame patients: label list instype

instype:
1 HDHP
2 HMO
3 PPO

¢ lgnoring that the visits frame is active
. frame visits: label list instype

instype:
1 HDHP
2 HMO
3 PPO

In any case, we can see that the value labels are all defined well

Opening a Dataset with Conflicts

Suppose our patient_info dataset were not quite so nice

The patient_ohno dataset fits this bill
o We will want to link to this

Let's look at it the frames way
First create a frame
. frame create ohno
Now open up the dataset in that frame
. frame ohno: use patient_ohno
And look at it

. frame ohno: codebook

0/4

id
type: numeric (byte)
range: [1,16] units:
unique values: 4 missing .:
tabulation: Freq. Value
11
1 4
1 9
1 16
birthdate

type: numeric daily date (int)

range: [8028,16027] units:

Stata 16 — Under the Hood © StataCorp LLC

Page 6 of 15

or equivalently: [24dec1981,18n0ov2003] units: days
unique values: 4 missing .: 0/4
tabulation: Freq. Value
1 8028 24dec1981
1 10027 15jun1987
1 14027 28may1998
1 16027 18nov2003
gender Patient Gender
type: string (stré)
unique values: 2 missing "": 0/4
tabulation: Freq. Value
2 "Female"
2 "Male"
insurance Insurance Type
type: numeric (long)
label: instype
range: [1,2] units: 1
unique values: 2 missing .: 0/4
tabulation: Freq. Numeric Label
2 1 HMO
2 2 PPO

Things to Note

= The patid is now called just id

= The insurance variable is encoded differently, but still has the instype value label

¢ This would be a big problem when using merge, update

Linking to Dataset with Differing Key Names

= We can still use frlink to link to a dataset where the key variables have different names

¢ Key: variable list which identifies individual variables in one dataset

= To do this, we must specify the keyvarlist in the frame() option

. frlink m:1 patid, frame(ohno id)

(3 observations in frame visits unmatched)

Stata 16 — Under the Hood © StataCorp LLC

Page 7 of 15

Avoiding A Dangerous Data Error
= Just to drive home the point, check that the instype value labels differ

o First in the active frame
. label list instype

instype:
1 HDHP
2 HMO
3 PPO

¢ Now in the linked dataset
. frame ohno: label list instype

instype:
1 HMO
2 PPO
3 HDHP

= Try to bring in the insurance variable from the ohno frame

. frget insurance, from(ohno) prefix(ohno_)

(3 missing values generated)
(1 variable copied from linked frame)

= Look at the value labels

. label list

instypel:
1 HMO
2 PPO
HDHP

w

instype:
1 HDHP
2 HMO
3 PPO

= Stata renamed the value label from frget to avoid a data error!

¢ This is better behavior than in merge

Notes about Linking
= You can use frget to grab many variables from the linked dataset
frget varlist . ..
= You could grab all but some variables by using the exclude () option
frget _all, exclude(notthisvarlist)

» This is like using the keepusing() option in merge except that it allows excluding instead of just including
variables

Stata 16 — Under the Hood © StataCorp LLC Page 8 of 15

Static Linking Requires Care
= Changing the key in the active frame is dangerous!
= Here is such a dangerous change
. replace patid = 9 if patid == 4 & visitdt==mdy(10,19,2015)
(1 real change made)
= Now go and get the gender variable
. frget gender, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

= Because the linking is static, you can get odd results

tabulate patid gender

Personal | Patient Gender

ID | Female Male | Total
_— o e P
1] 1 | 1
4 | 0 1| 1

9 | 3 1|
_______ e e
Total | 4 2 | 6

Rebuilding Links
= |f you are unsure of the state of the links, you should rebuild them
. frlink rebuild patients

rebuilding variable patients; executing

-> frlink m:1 patid, frame(patients)
(3 observations in frame visits unmatched)

variable patients successfully rebuilt

= Now go and grab the gender variable again

. drop gender
. frget gender, from(patients)

(3 missing values generated)
(1 variable copied from linked frame)

= Now there are no problems

tabulate patid gender

Personal | Patient Gender

ID | Female Male | Total

__ e e P
1] 1 | 1

4 | 0 1| 1

9 | 4 | 4
_______ e e
Total | 5 1| 6

Stata 16 — Under the Hood © StataCorp LLC Page 9 of 15

Clearing out
= The equivalent to clear for frames is

. clear frames

¢ This gets rid all data and frames and changes the active frame name to default:

. frames dir
default 0 x O

¢ frames reset is a synonym

= In case you wondered, clear all runs a clear frames

2.3 Copying, Putting, and Posting

Frames as Holding Areas
= You can also use frames for holding data

¢ In this case, they are something of a substitute for temporary files

o They are also faster, especially in networked environments
= frput will copy data to another frame

¢ The opposite of frget
» frcopy will copy an entire frame to another frame

o It will also create the frame to use the copy, making it a nice manual preserve
= frame post can be used to post observations

o Similar to post, but without tmp files

2.4 Side Gains from Frames

preserve and Frames
= The preserve command now uses frames for preserving in Stata/MP

o This happens for files under 1GB by default

© The maximum size can be changed using set max_preservemem
= This speeds up commands which use preserve heavily
© grexample for looking at graph examples

= This is especially useful when on a network where temporary files end up being stored on a server, instead of
locally

Linking Many Datasets
= You can have up to 100 frames at once
= This means you can link together 100 datasets if need be

= This could be useful in very wide datasets

Stata 16 — Under the Hood © StataCorp LLC Page 10 of 15

3 Report Generation Additions

3.1 Report Generation Additions
Report Generation Additions
= The report generation (aka dynamic document) tools have been extended
= dyndoc now has a docx option which produces a docx document directly from markdown
» putdocx has many additions for headers and footers, as well as a way to make narrative easier to use
= html2docx converts web pages (html) to Microsoft Word compatible documents (docx)
= docx2pdf converts docx files to pdf files

= There are a few other additions; these are the ones we'll look at

Getting Started
= We'll start with the docx option for dyndocx

= Let's move to the proper location

. cd ../dyndoc

Looking at a dyndoc file
= Take a look at the paper.md file
. doedit paper.md

= This is an example markdown file using Stata’s dynamic tags

< You can see that Stata 16 now has syntax highlighting for markdown
¢ The md extension is what alerted the Do-file Editor to use this highlighting
¢ You can change the language being highlighted

= Note that the dyndoc version has changed to 2

Making an html file

= As in Stata 15, this can be turned into a webpage

. dyndoc paper.md
© The output is not shown, because it would include all the output needed to make the html file

= We can click on the link to open the page

Converting to docx
= We could then convert this to a docx file
. html2docx paper.html, saving(paper_conv.docx)
= Clicking the link will open the docx file in Microsoft Word

= The resulting file needs some fixing up, but we'll do this later

Stata 16 — Under the Hood © StataCorp LLC Page 11 of 15

Going Directly from Markdown to docx
= We could get the same result by using the new docx option for dyndoc
. dyndoc paper.md, docx
¢ Again, the output is not shown

= This will look exactly like the preceding example, because in the background, Stata is running plain dyndoc then
running html2docx

= Generally, this worked well

o There is some wrapping of Stata output, however

¢ This is not present here, but there are other html-only things, like special characters, which might need
cleaning up

Tidying Up Wrapping
= Doing this conversion is nice, but it sometimes needs some tidying up due to wrapping
o The font size of 10pt for the fixed-width font allows 77 characters per line for letter size paper with standard
one-inch margins
o If your Stata window is wide, commands like describe and codebook will draw dashed line the entire
width of the your window

= There are a few things which can help

¢ Use a set linesize command to set the linesize to 90 or less
¢ Change the margins in the resulting docx document
© Make a style sheet (css) for the document and «dd_include» the style sheet

* See the first example in the dyndoc PDF documentation

Working With putdocx
= The files for putdocx are in the putdocx folder
. cd ../putdocx
= First take a look at how putdocx looked in Stata 15
. doedit putdocx15.do
= You can see here that there is no narrative mode
o Everything is a Stata command
= You also cannot put Stata code into the document without repeating it

o Once as simple text in a fixed-width font
¢ Once as code that gets run

Making the docx Document
= Doing the do-file will make a docx document
. do putdocx15.do
= On the Mac, you can open the resulting file from the Command window

! open putdocx15.docx

Stata 16 — Under the Hood © StataCorp LLC Page 12 of 15

New putdocx Features in Stata 16

= Stata 16 allows headers and footers

= Headers and footers can change through the document with sections
= Headers and footers can work across appending files

= There is now something like a narrative mode

= Open up putdocx16.do to see these

. doedit putdocx16.do

Headers and Footers to Start
= They get constructed in a couple of steps
= Here are the steps for a footer

¢ Use putdocx begin, footer(name) to name the footer
¢ Use putdocx paragraph, tofooter(name)
© Then add to the paragraph

* Using tables is good for multi-piece footers

= For headers, simply use header in place of footer above

Headers and Footer Changes

= When sections change, you can change the header and/or footer

= Simply use putdocx sectionbreak in place of putdocx begin from above

Narrative Mode
= While putdocx is mostly all Stata command as before, there are now text blocks:

© putdocx textblock begin starts a new paragraph which is simply text
© putdocx textblock append appends to the current paragraph
© putdocx textblock end ends a text block

o putdocx textfile allows inserting a file as a text block

= These should make documents with a lot of plain narrative (i.e. most documents) much easier to work with

Making the docx Document

= Doing the do-file will make a docx document
. do putdocx16.do
= Open the resulting file from the Command window

! open putdocx16.docx

Stata 16 — Under the Hood © StataCorp LLC Page 13 of 15

Other Changes
= While these are most of the changes, there have also been a few changes to

¢ markdown, which goes from markdown to html without processing Stata code
© putexcel had 2 syntax changes

* putexcel close has become putexcel save
* putexcel has changed picture() to image()
* Of course, version conrol will protect your Stata 15.1 and earlier do-files!

4 Conclusion

4.1 Conclusion

Conclusion

= Frames are something brand new in Stata 16

= The dynamic document (aka report) generation has had some nice additions

Stata 16 — Under the Hood © StataCorp LLC

Page 14 of 15

Index
C

clear frames command, see frames reset command
codebook command, 6

computing ages, 4

cwf command, see frame change command

D
dynamic documents, see report generation
dyndoc command, 10, 11

F

frame change command, 2

frame create command, 2

frame dir command, 2

frame post command, 9

frame rename command, 2

frames, 1-10
commands in non-active frames, 2, 5
differing value label definitions, 7
linking, 3-9

different key variables, 7
rebuilding links, 8, 9

preserve command behavior, 10

frames dir command, 9

frames reset command, 9

frcopy command, 9

frget command, 4,5, 7, 8

frlink command, 3, 7

frput command, 9

frval() function, 3

H
html2docx command, 11

M
merge command, 4

P
preserve command, 10
putdocx command, 12
headers and footers, 12, 13
putdocx narrative mode, see putdocx textblock com-
mand
putdocx sectionbreak command, 13
putdocx textblock command, 13

R
report generation, 10-13

V
value labels, 5

	Introduction
	Goals

	Frames
	Basic Frames
	Linking Frames
	Copying, Putting, and Posting
	Side Gains from Frames

	Report Generation Additions
	Report Generation Additions

	Conclusion
	Conclusion

