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The plan for the workshop
Preamble: What is Machine Learning?

I Supervised vs unsupervised machine learning
I Bias-variance trade-off

Session I: Examples of Machine Learners
I Tree-based methods, SVM
I Using Python for ML in with Stata
I Cluster analysis

Session II: Regularized Regression in Stata
I Lasso, Ridge and Elastic net, Logistic lasso
I lassopack and Stata 16’s lasso

Session III: Causal inference with Machine Learning
I Post-double selection
I Double/debiased Machine Learning
I Other recent developments
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Let’s talk terminology
Machine learning constructs algorithms that can learn from the
data.

Statistical learning is branch of Statistics that was born in
response to Machine learning, emphasizing statistical models and
assessment of uncertainty.

Robert Tibshirani on the difference between ML and SL (jokingly):

Large grant in Machine learning: $1,000,000
Large grant in Statistical learning: $50,000
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Let’s talk terminology
Artificial intelligence deals with methods that allow systems to
interpret & learn from data and achieve tasks through adaption.

This includes robotics, natural language processing. ML is a
sub-field of AI. . . .

Data science is the extraction of knowledge from data, using
ideas from mathematics, statistics, machine learning, computer
programming, data engineering, etc.

Deep learning is a sub-field of ML that uses artificial neural
networks (not covered today).
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Let’s talk terminology
Big data is not a set of methods or a field of research. Big data can
come in two forms:

Wide (‘high-dimensional’) data
Many predictors (large p) and
relatively small N.

Typical method:
Regularized regression

Tall or long data

Many observations, but only
few predictors.

Typical method:
Tree-based methods
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Let’s talk terminology
Supervised Machine Learning:

I You have an outcome Y and predictors X .
I Classical ML setting: independent observations.
I You fit the model Y want to predict (classify if Y is

categorical) using unseen data X0.

Unsupervised Machine Learning:
I No output variable, only inputs.
I Dimension reduction: reduce the complexity of your data.
I Some methods are well known: Principal component analysis

(PCA), cluster analysis.
I Can be used to generate inputs (features) for supervised

learning (e.g. Principal component regression).
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Econometrics vs Machine Learning
Econometrics

I Focus on parameter estimation and causal inference.
I Forecasting & prediction is usually done in a parametric

framework (e.g. ARIMA, VAR).
I Methods: Least Squares, Instrumental Variables (IV),

Generalized Methods of Moments (GMM), Maximum
Likelihood.

I Typical question: Does x have a causal effect on y?
I Examples: Effect of education on wages, minimum wage on

employment.
I Procedure:

I Researcher specifies model using diagnostic tests & theory.
I Model is estimated using the full data.
I Parameter estimates and confidence intervals are obtained

based on large sample asymptotic theory.
I Strengths: Formal theory for estimation & inference.
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Econometrics vs Machine Learning
Supervised Machine Learning

I Focus on prediction & classification.
I Wide set of methods: regularized regression, random forest,

regression trees, support vector machines, neural nets, etc.
I General approach is ‘does it work in practice?’ rather than

‘what are the formal properties?’
I Typical problems:

I Netflix: predict user-rating of films
I Classify email as spam or not
I Genome-wide association studies: Associate genetic variants with

particular trait/disease
I Procedure: Algorithm is trained and validated using ‘unseen’

data.
I Strengths: Out-of-sample prediction, high-dimensional data,

data-driven model selection.
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Motivation I: Model selection

The standard linear model

yi = β0 + β1x1i + . . .+ βpxpi + εi .

Why would we use a fitting procedure other than OLS?

Model selection.

We don’t know the true model. Which regressors are important?

Including too many regressors leads to overfitting: good in-sample
fit (high R2), but bad out-of-sample prediction.

Including too few regressors leads to omitted variable bias.
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Motivation I: Model selection

The standard linear model

yi = β0 + β1x1i + . . .+ βpxpi + εi .

Why would we use a fitting procedure other than OLS?

Model selection.

Model selection becomes even more challenging when the data is
high-dimensional.

If p is close to or larger than n, we say that the data is
high-dimensional.

I If p > n, the model is not identified.
I If p = n, perfect fit. Meaningless.
I If p < n but large, overfitting is likely: Some of the predictors

are only significant by chance (false positives), but perform
poorly on new (unseen) data.
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Motivation I: Model selection
The standard approach for model selection in econometrics is
(arguably) hypothesis testing.

Problems:
I Our standard significance level only applies to one test.
I Pre-test biases in multi-step procedures. This also applies to model

building using, e.g., the general-to-specific approach.
I Especially if p is large, inference is problematic. Need for false

discovery control (multiple testing procedures)—rarely done.
I ‘Researcher degrees of freedom’ and ‘p-hacking’: researchers try

many combinations of regressors, looking for statistical significance
(Simmons et al., 2011).

Researcher degrees of freedom
“it is common (and accepted practice) for researchers to explore various
analytic alternatives, to search for a combination that yields ‘statistical
significance,’ and to then report only what ‘worked.”’ Simmons et al., 2011
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Motivation II: High-dimensional data

The standard linear model

yi = β0 + β1x1i + . . .+ βpxpi + εi .

Why would we use a fitting procedure other than OLS?

High-dimensional data.

Large p is often not acknowledged in applied work:
I The true model is unknown ex ante. Unless a researcher runs

one and only one specification, the low-dimensional model
paradigm is likely to fail.

I The number of regressors increases if we account for
non-linearity, interaction effects, parameter heterogeneity,
spatial & temporal effects.

Example: Cross-country regressions, where we have only small
number of countries, but thousands of macro variables.
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Motivation III: Prediction

The standard linear model

yi = β0 + β1x1i + . . .+ βpxpi + εi .

Why would we use a fitting procedure other than OLS?

Bias-variance-tradeoff.

OLS estimator has zero bias, but not necessarily the best
out-of-sample predictive accuracy.

Suppose we fit the model using the data i = 1, . . . , n. The
prediction error for y0 given x0 can be decomposed into

PE0 = E [(y0 − ŷ0)2] = σ2ε + Bias(ŷ0)2 + Var(ŷ0).

In order to minimize the expected prediction error, we need to
select low variance and low bias, but not necessarily zero bias!
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Motivation III: Prediction
Low Variance High Variance
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The squared points (‘�’) indicate the true value and round points (‘◦’) represent estimates. The diagrams illustrate
that a high bias/low variance estimator may yield predictions that are on average closer to the truth than
predictions from a low bias/high variance estimator.
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Motivation III: Prediction

Source: Tibshirani/Hastie
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Motivation III: Prediction
A full model with all predictors (‘kitchen sink approach’) will
have the lowest bias (OLS is unbiased) and R2 (in-sample fit) is
maximised. However, the kitchen sink model likely suffers from
overfitting.

Removing some predictors from the model (i.e., forcing some
coefficients to be zero) induces bias. On the other side, by
removing predictors we also reduce model complexity and variance.

The optimal prediction model rarely includes all predictors and
typically has a non-zero bias.

Important: High R2 does not translate into good out-of-sample
prediction performance.

How to find the best model for prediction? — This is one of
the central questions of ML.
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Demo: Predicting Boston house prices
For demonstration, we use house price data available on the
StatLib archive.

Number of observations: 506 census tracts
Number of variables: 14

Dependent variable: median value of owner-occupied homes (medv)

Predictors: crime rate, environmental measures, age of housing
stock, tax rates, social variables. (See Descriptions.)
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http://lib.stat.cmu.edu/datasets/boston


Demo: Predicting Boston house prices
We divide the sample in half (253/253). Use first half for
estimation, and second half for assessing prediction performance.

Estimation methods:
I ‘Kitchen sink’ OLS: include all regressors
I Stepwise OLS: begin with general model and drop if p-value > 0.05
I ‘Rigorous’ LASSO with theory-driven penalty
I LASSO with 10-fold cross-validation
I LASSO with penalty level selected by information criteria
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Demo: Predicting Boston house prices
We divide the sample in half (253/253). Use first half for
estimation, and second half for assessing prediction performance.

OLS Stepwise rlasso cvlasso lasso2 lasso2
AIC/AICc BIC/EBIC1

crim 1.201∗ 1.062∗ 0.985 1.053
zn 0.0245 0.0201 0.0214
indus 0.01000
chas 0.425 0.396 0.408
nox -8.443 -8.619∗ -6.560 -7.067
rm 8.878∗∗∗ 9.685∗∗∗ 8.681 8.925 8.909 9.086
age -0.0485∗∗∗ -0.0585∗∗∗ -0.00608 -0.0470 -0.0475 -0.0335
dis -1.120∗∗∗ -0.956∗∗∗ -1.025 -1.057 -0.463
rad 0.204 0.158 0.171
tax -0.0160∗∗∗ -0.0121∗∗∗ -0.00267 -0.0148 -0.0151 -0.00925
ptratio -0.660∗∗∗ -0.766∗∗∗ -0.417 -0.660 -0.659 -0.659
b 0.0178∗∗∗ 0.0175∗∗∗ 0.000192 0.0169 0.0172 0.0110
lstat -0.115∗ -0.124 -0.113 -0.113 -0.109
Selected predictors 13 8 6 12 12 7
in-sample RMSE 3.160 3.211 3.656 3.164 3.162 3.279
out-of-sample RMSE 17.42 15.01 7.512 14.78 15.60 7.252
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Constant omitted.
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Demo: Predicting Boston house prices

I OLS exhibits lowest in-sample RMSE, but worst out-of-sample
prediction performance. Classical example of overfitting.

I Stepwise regression performs slightly better than OLS, but is
known to have many problems: biased (over-sized)
coefficients, inflated R2, invalid p-values.

I In this example, AIC & AICc and BIC & EBIC1 yield the same
results, but AICc and EBIC are generally preferable for
large-p-small-n problems.

I LASSO with ‘rigorous’ penalization and LASSO with
BIC/EBIC1 exhibit best out-of-sample prediction performance.
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Motivation III: Prediction
There are cases where ML methods can be applied ‘off-the-shelf’
to policy questions.

Kleinberg et al. (2015) and Athey (2017) provide examples:
I Predict patient’s life expectancy to decide whether hip replacement

surgery is beneficial.
I Predict whether accused would show up for trial to decide who can

be let out of prison while awaiting trial.
I Predict loan repayment probability.

But: in most cases, ML methods are not directly applicable for
research questions in econometrics and allied fields, especially
when it comes to causal inference.
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Motivation III: Prediction
Another example: ‘Improving refugee integration through
data-driven algorithmic assignment’

Bansak, Ferwerda, Hainmueller, Dillon, Hangartner, Lawrence, and Weinstein, 2018, Science

I Refugee integration on settlement location, personal characteristics
and synergies between the two.

I For example, the ability to speak French results is expected to lead
to higher employment chances in French-speaking cantons of
Switzerland.

I Host countries rarely take these synergies into account. Assignment
procedures are usually based on capacity considerations (US) or
random (Switzerland).
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Motivation III: Prediction
The proposed method proceeds in three steps:
1. predict the expected success, e.g. of finding a job using supervised ML
2. mapping from individuals to cases, i.e., family units
3. matching: assigning each case to a specific location (under constraints,

e.g. proportionality)

Note that the first step is a prediction problem, that doesn’t
require us to make causal statements about the effect of X on Y .
That’s why ML is so suitable.
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Motivation III: Prediction
The refugee allocation algorithm has the potential to lead to
employment gains. Predicted vs actual employment shares for
Swiss cantons:
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Motivation IV: Causal inference
Machine learning offers a set of methods that outperform OLS in
terms of out-of-sample prediction.

But: in most cases, ML methods are not directly applicable for
research questions in econometrics and allied fields, especially
when it comes to causal inference.

So how can we exploit the strengths of supervised ML (automatic
model selection & prediction) for causal inference?
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Motivation IV: Causal inference

Two very common problems in applied work:

I Selecting controls to address omitted variable bias when many
potential controls are available

I Selecting instruments when many potential instruments are
available.
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Motivation IV: Causal inference
A motivating example is the partial linear model:

yi = αdi︸ ︷︷ ︸
aim

+ β1xi ,1 + . . .+ βpxi ,p︸ ︷︷ ︸
nuisance

+εi .

The causal variable of interest or “treatment” is di . The xs are the
set of potential controls and not directly of interest. We want to
obtain an estimate of the parameter α.

The problem is the controls. We want to include controls
because we are worried about omitted variable bias – the usual
reason for including controls.

But which ones do we use?
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Motivation IV: Causal inference
A motivating example is the partial linear model:

yi = αdi︸ ︷︷ ︸
aim

+ β1xi ,1 + . . .+ βpxi ,p︸ ︷︷ ︸
nuisance

+εi .

The model corresponds to a setting we often encounter in applied
research:

I there is set of regressors which we are primarily interested in and
which we expect to be related to the outcome, but...

I we are unsure about which other confounding factors are relevant.
The setting is more general than it seems:

I The controls could include spatial or temporal effects.
I The above model could also be a panel model with fixed effects.
I We might only have a few observed elementary controls, but use a

large set of transformed variables to capture non-linear effects.
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Example: The role of institutions
Aim: Estimate the effect of institutions on output following
Acemoglu et al. (2001, AER). Discussion here follows BCH
(2014a).

Endogeneity problem: better institutions may lead to higher
incomes, but higher incomes may also lead to the development of
better institutions.

Identification strategy: use of mortality rates for early European
settlers as an instrument for institution quality.

Underlying reasoning: Settlers set up better institutions in places
where they are more likely to establish long-term settlements; and
institutions are highly persistent.

low death rates → colony attractive, build institutions
high death rates → colony not attractive, exploit
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Example: The role of institutions
Argument for instrument exogeneity: disease environment
(malaria, yellow fever, etc.) is exogenous because diseases were
almost always fatal to settlers (no immunity), but less serious for
natives (some degree of immunity).

Major concern: Need to control for other highly persistent factors
that are related to institutions & GDP.

In particular: geography. AJR use latitude in the baseline
specification, and also continent dummy variables.

High-dimensionality: We only have 64 country observations. BCH
(2014a) consider 16 control variables (12 variables for latitude and
4 continent dummies) for geography. So the problem is somewhat
‘high-dimensional’.
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Example: The role of institutions
This problem can now be solved in Stata.

We first ignore the endogeneoity of institutions and focus on the
selection of controls:

. clear

. use https://statalasso.github.io/dta/AJR.dta

. pdslasso logpgp95 avexpr ///
(lat_abst edes1975 avelf temp* humid* steplow-oilres), ///
robust
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Example: The role of institutions
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Example: The role of institutions
We can do valid inference with the variable of interest (here
avexpr) and obtain estimates that are robust to misspecification
issues (omitting confounders or including the wrong controls).

The same result can be achieved using Stata 16’s new dsregress.
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Example: The role of institutions
The model:

log(GDP per capita)i = α · Expropriationi + x ′i β + εi

Expropriationi = π1 · Settler Mortalityi + x ′i π2 + νi

Settler Mortalityi = x ′i γ + ui

In summary, we have one endogenous regressor of interest, one
instrument, but ‘many’ controls.

The method:
1. Use the LASSO to regress log(GDP per capita) against controls,

2. use the LASSO to regress Expropriation against controls,

3. use the LASSO to regress Settler Mortality against controls.

4. Estimate model with union of controls selected by Step 1-3.
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Example: The role of institutions
LASSO selects Africa dummy (in Step 1 and 3).

Specification Controls α̂ (SE) First-stage F
IV AJR Latitude 0.97 (0.19) 15.9
IV DS LASSO Africa 0.77 (0.18) 11.8
‘Kitchen Sink’ IV All 16 0.99 (0.61) 1.2

Double-selection LASSO results somewhat weaker (smaller
coefficients, first stage F -statistics smaller), but AJR results
basically sustained.

Double-selection LASSO performs much better than the ‘kitchen
sink’ approach (using all controls), where the model is essentially
unidentified as indicated by first stage F -statistic.
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Motivation IV: Causal inference
This is an active and exciting area of research in econometrics.
Probably the most exciting area (in my biased view).

Research is lead by (among others):
I Susan Athey (Standford)
I Guido Imbens (Standford)
I Victor Chernozhukov (MIT)
I Christian Hansen (Chicago)

Susan Athey:
‘Regularization/data-driven model selection will be the standard for
economic models’ (AEA seminar)

Hal Varian (Google Chief Economist & Berkeley):
‘my standard advice to graduate students [in economics] these days
is to go to the computer science department and take a class in
machine learning.’ (Varian, 2014)
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Some key concepts
Bias-variance-tradeoff: Model complexity (e.g., more regressors)
implies less bias, but higher variance.

Validation: The model is assessed using unseen data and some loss
function (e.g. mean-squared error). Cross-validation is a
generalisation where we the data is iteratively split in training and
validation sample.

Sparse vs. dense problems: Theoretical and practical
considerations depend on whether we assume the underlying true
data-generating process to be sparse (few relevant predictors) or
dense (many predictors).

Tuning parameters: Again and again, we will see tuning
parameters. These allow to reduce complex model selection
problems into one (or multi)-dimensional problems, where we only
need to select the tuning parameter.
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New ML features in Stata (incomplete list)

I Lasso and elastic net in lassopack & pdslasso as well as
Stata 16’s lasso; including lasso for causal inference!

I randomforest by Zou/Schonlau (on SSC).
I svmachines by Guenter/Schonlau (on SSC) for support

vector machines.

A big novelty of Stata 16 is the Python integration which allows to
make use of the extensive ML packages of Python (Scikit-learn).

Similarly, we can call R using Haghish’s rcall (available on
github).
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New ML features in Stata: Python integration
Random forest in Stata with a few lines (using Boston house price
data set).
ds crim-lstat
local xvars = r(varlist)

python:

from sfi import Data
import numpy as np
from sklearn.ensemble import RandomForestRegressor

X = np.array(Data.get("‘xvars’"))
y = np.array(Data.get("medv"))

rf = RandomForestRegressor(n_estimators = 1000, random_state = 42)
rf.fit(X,y)
xbhat = rf.predict(X)

Data.addVarFloat(’xbhat’)
Data.store(’xbhat’, None, xbhat)

end
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Summary I
Machine learning/Penalized regression

I ML provides wide set of flexible methods focused on
prediction and classification problems.

I ML outperforms OLS in terms of prediction due to
bias-variance-tradeoff.

Causal inference in the partial linear model
I Distinction between parameters of interest and

high-dimensional set of controls/instruments.
I General framework allows for causal inference with

low-dimensional parameters robust to misspecification; and
avoids problems associated with model selection using
significance testing.

I But there’s a price: the framework is designed for inference on
low-dim parameters only.
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Summary II
Machine learning/Penalized regression

I Stata has now extensive and powerful features for prediction
and causal inference with lasso & friends.

I Other ML methods are less well developed, e.g., random
forest.

I But: the ability to call R (via rcall) and Python (in Stata
16) makes it relatively easy to access R/Python’s ML
programs. User-friendly wrapper programs are likely to be
developed.

Reference for the lasso:

Ahrens, A., Hansen, C. B., & Schaffer, M. E. (2019). lassopack:
Model selection and prediction with regularized regression in Stata.
Retrieved from http://arxiv.org/abs/1901.05397
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