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Introduction

An overriding goal of outcomes research is measuring and comparing 
hospital performance.

Hospital profiling is a hot topic because provider-specific outcomes, such 
as mortality rates, are used to:
o Designate centers of excellence
o Determine reimbursement levels in pay for performance programs
o Classify providers as outliers



Risk-adjustment (1)

The outcome rates need to be adjusted to account for pre-existing 
factors that are outside the quality of care delivered and may confound 
their assessment.

We all know the direct and indirect methods to calculate age-adjusted 
rates.

Things get more complicated when other variables, such as clinical 
factors, are taken into account to derive risk-adjusted rates. These 
additional characteristics can be retrieved from the hospital discharge 
abstracts, which are generally inexpensive and enable the analysis of 
large populations and a large number of clinical conditions.



Risk-adjustment (2)

Statistical techniques to derive hospital-specific risk-adjusted rates can 
ben trivially outlined into three steps:
o Fit an appropriate regression model to the data
o Calculate risk-standardized outcomes resulting from regression analysis
o Display risk-standardized outcomes using appropriate graphical 

representations

(We are not going to review advanced techniques such as Bayesian 
hierarchical models.)



Logistic regression

The easiest way to obtain risk-adjusted outcome measures across 
providers is to build a “conventional” logistic regression model where 
depvar is a binary outcome measure expressed as 0/1 (say death) and 
covariates indepvars are the patient case mix (age, sex, co-morbidities).

logit depvar indepvars [if] [in]

However, some precautions need to be taken to account for the positive 
correlation between observations from within the same hospital.



Robust standard errors

When conducting analyses on correlated data, a robust estimation of 
standard errors should be used. These are known as robust, “sandwich”, or 
Huber-White standard errors. In this command, varname_i uniquely 
identifies providers.

logit depvar indepvars [if] [in], vce(cluster varname_i)

These estimates allow the correct specification of the mean model while 
relaxing the assumption of correctly specifying the form of the variance 
model, i.e., the working correlation matrix.



Generalized estimating equations (GEEs)

Fitting conventional regression models to correlated data might also lead 
to inefficient parameter estimates.

GEEs, a flexible extension of conventional regression models, account for 
correlated observations. In Stata, the default GEE within-group correlation 
structure corresponds to the equal-correlation model, also called 
“exchangeable”, which is appropriate for profiling studies (Ballinger 2004).

xtgee depvar indepvars [if] [in], family(binomial) 
link(logit) i(varname_i) vce(robust) 
corr(exchangeable) // c(exc) is optional

Robust standard errors should be estimated in conjunction with GEEs 
(Liang and Zeger 1986) by using the vce(robust) option.



Conventional models or GEEs?

Results from GEEs and logistic regression are identical if the within-group 
correlation is close to zero.

To test whether observations are actually correlated, one should compare 
a GEE model with an “exchangeable” working matrix and a GEE model 
with an “independent” working matrix, the latter corresponding to logit. 
The best model has the lowest quasi-likelihood under independence 
criterion (Pan 2001).

The qic command is downloadable from SSC (Cui 2007).

qic depvar indepvars [if] [in], family(binomial) link(logit) 
i(varname_i) robust corr(exchangeable)

qic depvar indepvars [if] [in], family(binomial) link(logit) 
i(varname_i) robust corr(independent)



Predicted probabilities

After running the best model between the two, we estimate individual risk 
for each patient (newvar) using the observed values of her/his 
confounding variables.

predict newvar [if] [in], rate // , pr in logit post-estimation

Then the predicted probabilities can be summed over all records within 
each provider to derive the expected number of events.

tabstat newvar [if] [in], by(varname_i) statistic(sum)

The expected number of events is the number of events that would occur 
if the “standard” event rates had happened, given the provider actual 
case mix. This can be seen as an “indirect” form of standardization.



Risk-standardized rates

The adjusted outcome for each provider is presented as the ratio of the 
observed to the expected number of events (O/E ratio). The O/E ratio is 
favorable if <1, and unfavorable if >1.

To allow for comparison of each hospital performance with the 
national/regional average, the O/E ratio should be multiplied by the 
overall outcome rate. This measure is called risk-standardized rate. When 
the events are deaths, the common name is risk-standardized mortality 
rate (RSMR).

Before discussing how to get these measures in Stata, let us introduce an 
example based on real data.



Example: 30-day AMI mortality rates in Latvia

We use real data from 20 hospitals in Latvia, year 2016. A total of 2916 
patients with acute myocardial infarction (AMI) met the inclusion criteria, 
and the overall mortality rate was 17.5%.

Death within 30 days of hospital admission for AMI is Death30Days, 
expressed as 0/1, and the hospital identification number is HospitalID. 
Potential confounders include: age, sex, ST elevation status, history of AMI, 
and 31 co-morbidities based on the Elixhauser method (Quan et al. 2005).

Variables included as confounders in the multivariable model from which 
RSMRs will be computed are: age, sex, cardiac arrhythmias, pulmonary 
circulation disorders, peripheral vascular disease, diabetes with 
complications, and ST elevation status.

… Wait a minute: why were these specific variables selected for inclusion?



Confounder selection

The choice of predictive variables in regression analysis is somewhat of an 
art. When we use pre-defined sets of covariates, such as Elixhauser’s, we 
may want to avoid model over-fitting and misclassification by including 
only covariates whose estimated regression coefficients are stable. This 
can be achieved via numerous automated selection procedures.

See Austin and Tu (2004) for methodological details, and Royston and 
Sauerbrei (2009) to see how these automated selections can be 
performed in Stata.



Choosing the right model (1)

We first calculate the QIC value for the exchangeable correlation 
structure, then we do the same for the independent correlation structure.

. set matsize 11000 // default matrix size must be augmented first

. xi: qic Death30Day Sex i.AgeCL4 CARDARRH PULMCIRC PERIVASC DMCX i.AMItype, ///
> family(binomial) link(logit) i(HospitalID) corr(exchangeable) ///
> nolog nodisplay // GEE model with nolog and nodis options to save space
i.AgeCL4          _IAgeCL4_1-4        (naturally coded; _IAgeCL4_1 omitted)
i.AMItype _IAMItype_1-3       (naturally coded; _IAMItype_1 omitted)

QIC and QIC_u
-------------------------------------------
Corr =         exchangeable
Family =           binomial
Link =                logit
p =                      11
Trace =              13.999
QIC =              2479.168
QIC_u =            2473.171
-------------------------------------------



Choosing the right model (2)

. xi: qic Death30Day Sex i.AgeCL4 CARDARRH PULMCIRC PERIVASC DMCX i.AMItype, ///
> family(binomial) link(logit) i(HospitalID) corr(independent) ///
> nolog nodisplay // logistic model with nolog and nodis options to save space
i.AgeCL4          _IAgeCL4_1-4        (naturally coded; _IAgeCL4_1 omitted)
i.AMItype _IAMItype_1-3       (naturally coded; _IAMItype_1 omitted)

QIC and QIC_u
-------------------------------------------
Corr =          independent
Family =           binomial
Link =                logit
p =                      11
Trace =              18.931
QIC =              2429.175
QIC_u =            2413.313
-------------------------------------------

The exchangeable structure has a QIC of 2479.168, while the independent 
structure has a QIC of 2429.175.



Choosing the right model (3)

Conventional logistic regression is the best fitting model here.
. xi: logit Death30Day Sex i.AgeCL4 CARDARRH PULMCIRC PERIVASC DMCX i.AMItype, or vce(cluster HospitalID) nolog
i.AgeCL4          _IAgeCL4_1-4        (naturally coded; _IAgeCL4_1 omitted)
i.AMItype _IAMItype_1-3       (naturally coded; _IAMItype_1 omitted)

Logistic regression                             Number of obs =      2,916
Wald chi2(10)     =    1388.99
Prob > chi2       =     0.0000

Log pseudolikelihood = -1195.6566               Pseudo R2         =     0.1155

(Std. Err. adjusted for 20 clusters in HospitalID)
------------------------------------------------------------------------------

|               Robust
Death30Days | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
Sex |   1.046859   .1123145     0.43   0.669     .8483312    1.291848

_IAgeCL4_2 |   2.342332   .3945279     5.05   0.000     1.683749    3.258514
_IAgeCL4_3 |    3.72511   .8730198     5.61   0.000     2.353156    5.986949
_IAgeCL4_4 |   7.319825   1.821989     8.00   0.000     4.493935     11.9227

CARDARRH |   1.835576   .4022704     2.77   0.006      1.19462    2.820428
PULMCIRC |   2.372894   .8879484     2.31   0.021     1.139606    4.940855
PERIVASC |   1.802321   .2482871     4.28   0.000     1.375849    2.360985

DMCX |   2.315345   .4964455     3.92   0.000     1.520915    3.524734
_IAMItype_2 |   .4575801   .0678873    -5.27   0.000     .3421225    .6120018
_IAMItype_3 |   1.312559    .253742     1.41   0.159     .8985984     1.91722

_cons |   .0513947   .0109805   -13.89   0.000      .033811    .0781229
-------------+----------------------------------------------------------------
Note: _cons estimates baseline odds.



Hospital-specific RSMRs following AMI (1)

After logit post-estimation (p_hat), a few command lines have to be run 
to derive hospital-specific RSMRs and save these values as a new data 
file.

First, use collapse to manipulate data at hospital level and to derive the 
total number of observed deaths (Obs), expected deaths (Exp), and 
patients (N)—remember to launch preserve first! For each hospital, you 
generate a new variable (MR) containing the crude mortality rates (%).

. predict p_hat, pr

. preserve

. collapse (sum) Obs = Death30Day Exp = p_hat (count) N = Death30Day, ///
> by(HospitalID)

. generate MR = Obs*100/N



Hospital-specific RSMRs following AMI (2)

After tabstat, we define a scalar (Rate) containing the overall mortality rate 
value, that is then used to calculate the RSMRs. We also compute the 95% CIs 
for RSMRs based on the formula that relates the chi-squared distribution and 
the Poisson distribution (Garwood 1936).

. tabstat Obs N, statistic(sum) save

stats |       Obs N
---------+--------------------

sum |       510      2916
------------------------------

. matrix total = r(StatTotal)

. scalar Rate = total[1,1]*100/total[1,2]

. generate RSMR = Obs/Exp*Rate

. generate lb_RSMR = (invchi2(2*Obs,0.05/2)/2)/Exp*Rate // RSMR lower limit
(1 missing value generated)

. generate ub_RSMR = (invchi2(2*Obs+2,1-0.05/2)/2)/Exp*Rate // RSMR upper limit



Hospital-specific RSMRs following AMI (3)

New results are saved as RSMR.dta and visualized with list.

. save RSMR

. list

HospitalID Obs Exp N         MR       RSMR    lb_RSMR ub_RSMR
1     6   3.260993    23   26.08696   32.17986   11.80944     70.042  
2     5   6.318017    38    13.1579   13.84114   4.494181   32.30061  
3    14   9.483574    46   30.43478   25.81895   14.11546   43.31982  
4    36   35.05648   234   15.38461   17.96043   12.57927   24.86481  
5     3    4.12641    21   14.28571   12.71544    2.62223   37.15992  
6    23   20.86314   102   22.54902   19.28106   12.22254   28.93106  
7    28   17.96316   116   24.13793   27.26201   18.11541    39.4012  
8    12   6.220828    35   34.28571   33.73772   17.43277     58.933  
9     4   2.108751     7   57.14286    33.1755   9.039207   84.94244  
10     6   4.146946    26   23.07692   25.30495   9.286472   55.07823  
11    22   24.82706   157   14.01274   15.49816   9.712611   23.46439  
12     4   7.993699    52   7.692307    8.75175   2.384557   22.40796  
13    14    12.1716    60   23.33333   20.11699   10.99815   33.75289  
14    91   124.8035   709   12.83498   12.75255   10.26756   15.65731  
15     0   .3216332     1          0          0          .   200.5932  
16    31    25.3009   124         25   21.42932   14.56018    30.4172  
17   142   152.1697   849   16.72556   16.32086   13.74692   19.23678  
18    17   7.870675    36   47.22222   37.77632    22.0061   60.48354  
19    36   30.62052   182   19.78022   20.56235   14.40161   28.46695  
20    16   14.37248    98   16.32653   19.47022   11.12891   31.61842 

. restore // restore original data after preserve



Graphical representations of RSMRs

RSMR.dta is now used to produce plots of hospital-specific RSMRs.

Plots useful to display outcome rates are (Spiegelhalter 2005):
o Caterpillar plots, sometimes referred to as “forest plots”
o Funnel plots

Both plots, especially funnel plots, operate a fair distinction between small 
and large providers, and allow to ascertain whether large deviations from 
the state average are systematic or due to chance.



Caterpillar plot

The caterpillar plot is a sort of league table where providers are ranked 
according to a performance indicator and, with the aid of CIs, outlying 
providers are identified. To avoid data misinterpretation, the providers 
should never be labeled with their rank, and outlying positions have to be 
strictly determined using CIs.

Plots of estimates and CIs can be obtained in Stata using eclplot, which 
is downloadable from SSC (Newson 2003).



Caterpillar plot of RSMRs following AMI (1)

Before launching eclplot, a new variable with the ranking of hospitals 
(Rank) must be created. Hospital #15, with only one AMI patient, has 
been previously discarded.

. sort RSMR // Sorting hospitals according to RSMRs

. generate Rank = _n

. eclplot RSMR lb_RSMR ub_RSMR Rank, plotregion(color(white) ilcolor(black) ///
> margin(none)) graphregion(color(white)) ylabel(0(10)100, angle(360) notick ///
> nogrid) yscale(noextend noline) ytitle("RSMR (%)") xlabel(0 " " 20 " ", ///
> notick) xscale(noextend noline) xtitle("") estopts(mlabel(HospitalID) ///
> mlabposition(0) mlabcolor(white) msymbol(o) msize(huge) mcolor(gs6)) ///
> ciopts(msize(zero) lwidth(medthick) lcolor(gs10)) ///
> baddplot(function y = Rate, col(black) lwidth(thin) range(0 20))



Caterpillar plot of RSMRs following AMI (2)

Hospital #14 is a low outlier, while hospitals #7 and #18 are high outliers.
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RSMRs following AMI in 19 hospitals in Latvia, Year 2016. Ninety-five per cent confidence intervals are 
plotted and compared to the overall rate of 17.5%. Hospital #15 is excluded.



Funnel plot

Each hospital-specific RSMR (𝑦𝑦 axis) is plotted relative to its denominator 
size (𝑥𝑥 axis). Given 𝑟𝑟 as the overall rate, 𝑛𝑛 as the hospital volume and 𝑧𝑧 as 
the standard normal distribution quantile, control limits are superimposed 
following the formula:

𝑦𝑦 ⁄𝛼𝛼 2 𝑟𝑟,𝑛𝑛 = 𝑟𝑟 ± 𝑧𝑧 ⁄𝛼𝛼 2
𝑟𝑟 1 − 𝑟𝑟

𝑛𝑛

where 𝑧𝑧 ⁄𝛼𝛼 2 is 1.96 for 95% control limits and 3.09 for 99.8% control limits.

These boundaries are a measure of precision of the hospital rates, and 
depend on denominator sizes. Hospitals lying outside the control limits can 
be seen as outliers.



Funnel plot of RSMRs following AMI (1)

Funnel plots can be obtained either using the funnelcompar package 
(Forni and Gini 2009), or combining a scatter plot with two-way function 
plots.

We have opted for the second choice. Before doing that, we set highest 
and lowest values for control limits, based on the range of 𝑦𝑦 axis (up to 
60% here).

. local up95 = (Rate*(100-Rate))/((60-Rate)/1.96)^2 // Highest 95% limit point

. local low95 = (Rate*(100-Rate))/((0-Rate)/1.96)^2 // Lowest 95% limit point

. local up99 = (Rate*(100-Rate))/((60-Rate)/3.09)^2 // Highest 99.8% limit point

. local low99 = (Rate*(100-Rate))/((0-Rate)/3.09)^2 // Lowest 99.8% limit point



Funnel plot of RSMRs following AMI (2)

The Stata syntax for a customized funnel plot with the range of 𝑥𝑥 axis up to 
900 is as follows.
. twoway ///
> (function y = Rate+1.96*sqrt((Rate*(100-Rate))/x), col(black) lwidth(thin) ///
> lpattern(dash) range(`up95' 900)) ///
> (function y = Rate-1.96*sqrt((Rate*(100-Rate))/x), col(black) lwidth(thin) ///
> lpattern(dash) range(`low95' 900)) ///
> (function y = Rate+3.09*sqrt((Rate*(100-Rate))/x), col(black) lwidth(thin) ///
> lpattern(shortdash) range(`up99' 900)) ///
> (function y = Rate-3.09*sqrt((Rate*(100-Rate))/x), col(black) lwidth(thin) ///
> lpattern(shortdash) range(`low99' 900)) ///
> (function y = Rate, col(black) lwidth(thin) range(0 900)) ///
> (scatter RSMR N, plotregion(color(white) ilcolor(black) ///
> margin(none)) ytitle("RSMR (%)") xtitle("AMI Patients", height(5)) ///
> ylabel(-0(10)60, angle(360) glcolor(gs15) glwidth(vthin) nogmax nogmin notick) ///
> xlabel(0(100)900, grid glcolor(gs15) glwidth(vthin) nogmax nogmin notick) ///
> xscale(noextend noline) yscale(noextend noline) mlabcolor(black) ///
> mlabsize(vsmall) mfcolor(none) mlcolor(black) mlwidth(thin) bgcolor(white) ///
> graphregion(color(white)) mlabel(HospitalID) mlabposition(0) msymbol(o) ///
> msize(huge) mlcolor(gs8) mfcolor(gs8) mlabcolor(white) ///
> legend(order(3 "99.8% Control Limit" 1 "95% Control Limit" 5 "Overall Mortality Rate") /// 
> size(small) col(1) ring(0) pos(2) region(style(none))))



Funnel plot of RSMRs following AMI (3)

Hospital #14 is a low outlier, while hospitals #7, #8 and #18 are high outliers.
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RSMRs following AMI in 19 hospitals in Latvia, Year 2016. The target is the overall rate of 17.5%. Hospital 
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Caterpillar plots or funnel plots?

Funnel plots might be preferred to caterpillar plots because:
o The eye is naturally drawn to important points that lie outside the funnel
o There is no spurious ranking of institutions
o The relationship of outcome with volume can be preliminarily assessed
o Pairwise comparisons between providers are naturally discouraged



For more details…

… check the next issues of the Stata Journal: “Tips for Calculating and 
Displaying Risk Standardized Hospital Outcomes in Stata” by J. Lenzi and S. 
Pildava.
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