Panel Regression in Stata

An introduction to type of models and tests

Gunajit Kalita Rio Tinto India

STATA Users Group Meeting 1st August, 2013, Mumbai

- Understand Panel structure and basic econometrics behind
- Application of different Panel regression models and post estimation tests in STATA

What are Panel Data?

Panel data are a type of *longitudinal data*, or data collected at different points in time. Three main types of *longitudinal data*:

- **Time series data**: Many observations (large t) on as few as one unit (small N). Examples: stock price trends, aggregate national statistics
- **Pooled cross sections:** Two or more independent samples of many units (large N) drawn from the same population at different time periods:
 - General Social Surveys
 - India's Decennial Census
- **Panel data:** Two or more observations (small t) on many units (large N)
 - Panel surveys of households and individuals (NSS EUS, CES)
 - Data on organizations and firms at different time points (ASI, NSS)
 - Aggregated country/regional data over time (WDI,WEO,BOP)
- The literature on econometrics of panel regression and options available in STATA is vast, this presentation will only introduce the fundamentals of this topic today

Advantage of Panel Data

Heterogeneity	 It relate to individuals, firms, states, countries etc., over time, presence of heterogeneity in these units is natural Such heterogeneity can be explicitly taken into account by allowing individual specific variables
Degree of freedom	 It combines time series of cross section observations, thus Gives more informative data, more variability, less collinearity among variables, more degree of freedom and more efficiency By studying repeated cross section of observation, it is better suited to study dynamics of change
Unobservable	 Panel data can better detect and measures effects that simply can not be observed in pure cross section or time series data. For example, the effect of minimum wage laws on employment and earnings can be better studied if we include successive waves of minimum wage increase in the federal and/or state minimum wages
Behavioural Models	 Panel data enables us to study more complicated behavioural models For example, phenomenon such as economies of scale and technological change can be better handled by panel data It can also minimise the bias that might result if we aggregate individuals or firms into broad aggregates

Data requirement

 Basic panel methods require at least two "waves" of measurement

Consider services share of GDP in a country and its economic development (GDP per capita) in the last three decades

- One way to construct your panel is to create a single record for each combination of unit (country, firm, individual) and time period
- Data include:
 - **A time-invariant** unique identifier for each unit (country, firm, individual)
 - **A** time-varying outcome (Services share in GDP, GDP, Inflation)
 - **An indicator of time** (Year, Quarter, Month, day)
- Variation for dependent variable and regressors:

Overall :	Over time and individuals
Between:	Between individuals
Within:	Within individuals (over time)

Country Name	Year	Services, etc., value added (% of GDP)	GDP per capita, PPP (constant 2005 international \$)	GDP per capita (constant 2000 US\$)	Urban population (% of total)	Population, total	Age dependency ratio (% of working-age population)	Trade (% of GDP)
India	1992	44.9	1238	316.8	25.9	910064576	70.38	18.60
India	1993	45.2	1272	325.5	26.2	928226051	69.66	19.90
India	1994	44.7	1330	340.5	26.4	946373316	68.90	20.30
India	1995	45.7	1404	359.4	26.6	964486155	68.11	23.10
India	1996	45.6	1482	379.4	26.8	982553253	67.29	22.20
India	1997	47.1	1515	387.7	27	1000558144	66.45	22.90
India	1998	47.9	1580	404.5	27.3	1018471141	65.57	24.00
India	1999	49.7	1684	426.9	27.5	1036258683	64.68	25.30
India	2000	50.5	1722	436.6	27.7	1053898107	63.77	27.40
India	2001	51.5	1778	451.9	27.9	1071374264	62.84	26.40
India	2002	52.7	1818	461.5	28.1	1088694080	61.90	30.00
India	2003	52.8	1932	492.4	28.3	1105885689	60.96	30.90
India	2004	53.0	2052	525	28.5	1122991192	60.04	36.90
India	2005	53.0	2209	565.3	28.7	1140042863	59.14	41.30
India	2006	52.9	2378	608.7	29	1157038539	58.26	45.30
India	2007	52.7	2573	658.8	29.3	1173971629	57.42	44.90
India	2008	54.2	2635	681.5	29.5	1190863679	56.60	52.70
India	2009	55.3	2813	733.1	29.8	1207740408	55.82	44.90
India	2010	- 54.7 -	3039	786.7	30.1	1224615000	55.06	46.30
Indonesia	1992	41.7	2270	669.1	32.6	190512441	64.62	52.80
Indonesia	1993	42.4	2396	706.5	33.6	193525648	63.34	50.50
Indonesia	1994	42.1	2538	748.3	34.6	196488446	62.06	51.90
Indonesia	1995	41.1	2711	799.3	35.6	199400339	60.77	54.00
Indonesia	1996	39.9	2877	848.2	36.9	202257039	59.45	52.3
Indonesia	1997	39.6	2971	876.0	38.2	205063468	58.13	56.0
Indonesia	1998	36.7	2547	750.8	39.4	207839287	56.85	96.2
Indonesia	1999	37.0	2533	746.8	40.7	210610776	55.69	62.9
Indonesia	2000	38.5	2623	773.3	42	213395411	54.67	71.4
Indonesia	2001	38.3	2683	791.1	43.2	216203499	53.81	69.8
Indonesia	2002	40.1	2768	816.0	44.4	219026365	53.08	59.1
Indonesia	2003	41.1	2863	844.2	45.7	221839235	52.44	53.6
Indonesia	2004	41.0	2970	875.7	46.9	224606531	51.85	59.8
Indonesia	2005	40.3	3102	914.6	48.1	227303175	51.25	64.0
Indonesia	2006	40.1	3236	953.9	49.2	229918547	50.65	56.7
Indonesia	2007	39.5	3403	1003.4	50.3	232461746	50.05	54.8
Indonesia	2008	37.5	3570	1052.4	51.5	234951154	49.46	58.6
la deservita	2000	27.0	2000	1000.0	50 C	007444405	40.00	45.5

Panel data models

Pooled Model

• The pooled model specifies constant coefficients, the usual assumptions for crosssectional analysis. It is most restrictive panel model

$$y_{it} = \alpha + x_{it} \beta + u_{it}$$

• The default standard errors erroneously assume errors are independent over *i* for given *t*.

Individual-specific effects model

- We assume that there is unobserved heterogeneity across individuals captured by α_i
 Example: unobserved ability of an individual that affects wages
- The main question is whether the individual-specific effects α_i are correlated with the regressors.
- If they are correlated, we have the *fixed effects (FE) model*. If they are not correlated we have the *random effects (RE) model*

Individual-specific effects model

Fixed effects model (FE)

• It allows individual-specific effects α_i to be correlated with the regressors x. We include α_i as intercepts. Each individual has a different intercept term and the same slope parameters $y_{it} = \alpha_i + x_{it} \beta + u_{it}$

$$\hat{\alpha}_i = \bar{y}_i - \bar{x}_i \hat{\beta}$$

In other words, the individual-specific effects are the leftover variation in the dependant variable that cannot be explained by the regressors

Random effects model (RE)

• It assumes that individual-specific effects are distributed independently of the regressors, we include α_i in the error term. Each individual has the same slope parameters and a composite error term $\varepsilon_{it} = \alpha_i + e_{it}$

$$y_{it} = x_{it}\beta + (\alpha_i + e_{it})$$

- Here $\operatorname{var}(\varepsilon_{it}) = \sigma_{\alpha}^2 + \sigma_e^2$ and $\operatorname{cov}(\varepsilon_{it}, \varepsilon_{is}) = \sigma_{\alpha}^2$, so $\rho_{\varepsilon} = \operatorname{cor}(\varepsilon_{it}, \varepsilon_{is}) = \sigma_{\alpha}^2 / (\sigma_{\alpha}^2 + \sigma_e^2)$
- Rho is the *interclass correlation* of the error. Rho is the fraction of the variance in the error due to the individual-specific effects. It approaches 1 if the individual effects dominate the idiosyncratic error

Choosing between fixed and random effects

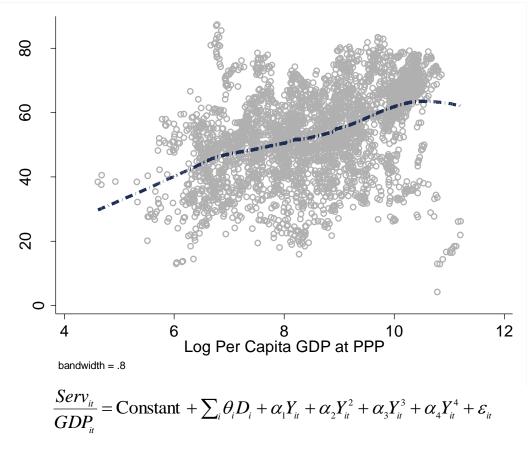
Breusch-Pagan Lagrange Multiplier (LM) test

- This is a test for the random effects model based on the OLS residual. The LM test helps to decide between a random effects regression and a simple OLS regression
- The null hypothesis is that variances across entities is zero. Test whether σ_u^2 or equivalently $cor(u_{it}, u_{is})$ is significantly different from zero.
- If the LM test is not significant, it implied no significant difference across units(i.e. no panel effect), thus can run simple OLS regression

Hausman test

- The null hypothesis is that the preferred model is random effects vs. the alternative fixed effects. It tests whether the unique errors (α) are correlated with the regressors, the null hypothesis is they are not correlated.
- The random effects estimator is more efficient so we need to use it if the Hausman test supports it. The Hausman test statistic can be calculated only for the time-varying regressors
- The Hausman test statistic is:

$$H = \left(\hat{\beta}_{RE} - \hat{\beta}_{FE}\right) \left(V\left(\hat{\beta}_{RE}\right) - V\left(\hat{\beta}_{FE}\right)\right) \left(\hat{\beta}_{RE} - \hat{\beta}_{FE}\right)$$


Example: Cross country panel Two Waves of Services Growth (NBER WP:14968)

"The positive association between the service sector share of output and per capita income is one of the best-known regularities in all of growth and development economics. Yet there is less than complete agreement on the nature of that association. Here we identify two waves of service sector growth..."

- They identify two waves of service sector growth, a first wave in countries with relatively low levels of per capita GDP and a second wave in countries with higher per capita incomes
- There is evidence of the second wave occurring at lower income levels after 1990
- Does that mean India's experience is not an aberration?

Command: lowess ser_sh lngdpc_pp

Lowess Plot of the Relationship between Log Per Capita Income and Services/GDP (1980-2010), 116 countries

Panel-Fixed effect (FE) model

STATA Commands:

- To convert country name from string to individual code encode country, gen(con_cod)
- Declare the Panel variables
 <u>xtset</u> con_code year
- Run country fixed effect model <u>xtreg ser_sh lngdpc_pp lngdp_pp2</u> lngdp_pp3 lngdp_pp4 lngdp_90s lngdp_20s,fe

Fixed-effects (within) regression Group variable: con_cod					of obs = of groups =	
R-sq: withi	n = 0.1984			Obs per	group: min =	- 10
betwe	en = 0.2191				avg =	· 30.1
overa	11 = 0.2085)				max =	- 31
				F(6,327	8) =	135.22
corr(u_i, Xh)(=0.1150)			Prob >	F =	• 0.0000
ser_sh	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
lngdpc_pp	332.9264	74.79444	4.45	0.000	186.2779	479.57
lngdp_pp2	-60.60611	14.42567	-4.20	0.000	-88.89036	-32.3218
lngdp_pp3	4.906946	1.213405	4.04	0.000	2.527837	7.28605
lngdp_pp4	1477659	.0376061	-3.93	0.000	2214997	074032
lngdp_90s	.3742022	.0312394	11.98	0.000	.3129514	.43545
lngdp_20s	.6419146	.0370546	17.32	0.000	.5692621	.714567
_cons	-642.7124	142.5919	-4.51	0.000	-922.2906	-363.134
sigma u	10.953122					
sigma e						
		(fraction	of varia	nce due t	oui)	

Panel-Random effect (RE) model

STATA Commands:

 Run random effect model xtreg ser_sh Ingdpc_pp Ingdp_pp2 Ingdp_pp3 Ingdp_pp4 Ingdp_90s Ingdp_20s,re

 Testing for cross-sectional dependence or contemporaneous correlation xtcsd, pesaran abs

Pesaran's test of cross sectional independence =

rho

16.947, Pr = 0.0000

Average absolute value of the off-diagonal elements = (0.439)

Random-effects	Number	of obs	=	3397			
Group variable	Number	of group	s =	113			
R-sq: within	= 0.1983			Obs per	group:	min =	10
	n = 0.2220					avg =	30.1
overall	4 0.2130					max =	31
				Wald ch	i2(6)	=	841.07
corr(u_i, X)	€ 0 (assume	1)		Prob >	chi2	=	0.0000
ser_sh	Coef.	Std. Err.	Z	₽> z	[95%	Conf.	Interval]
lngdpc_pp	352.3767	73.52802	4.79	0.000	208.2	644	496.489
lngdp pp2	-64.61057	14.17162	-4.56	0.000	-92.38	643	-36.83472
lngdp_pp3	5.26195	1.191796	4.42	0.000	2.926	072	7.597828
lngdp_pp4	1590866	.0369467	-4.31	0.000	2315	800	0866725
lngdp_90s	.3669355	.0308193	11.91	0.000	.3065	308	.4273402
lngdp_20s	.6244614	.0347734	17.96	0.000	.5563	067	.692616
_cons	-677.8364	140.3619	-4.83	0.000	-952.9	406	-402.7321
	10.817956						
sigma_e	5.8722998						
	(•	- ·				

(.7724016) (fraction of variance due to u_i)

OLS or RE or Fe

STATA Commands:

• Breusch-Pagan Lagrange Multiplier (LM) test: OLS vs RE

quietly xtreg ser_sh Ingdpc_pp
Ingdp_pp2 Ingdp_pp3 Ingdp_pp4
Ingdp_90s Ingdp_20s,re
xttest0

 Hausman test: RE vs FE quietly xtreg ser_sh Ingdpc_pp Ingdp_pp2 Ingdp_pp3 Ingdp_pp4 Ingdp_90s Ingdp_20s,fe estimate store fe

> quietly xtreg ser_sh Ingdpc_pp Ingdp_pp2 Ingdp_pp3 Ingdp_pp4 Ingdp_90s Ingdp_20s,re estimate store re hausman fe re

Breusch and Pagan Lagrangian multiplier test for random effects

ser_sh[con_cod,t] = Xb + u[con_cod] + e[con_cod,t]

Estimated results:

	Var	<pre>sd = sqrt(Var)</pre>
ser_sh	191.0374	13.82163
e	34.48391	5.8723
u	117.0282	10.81796

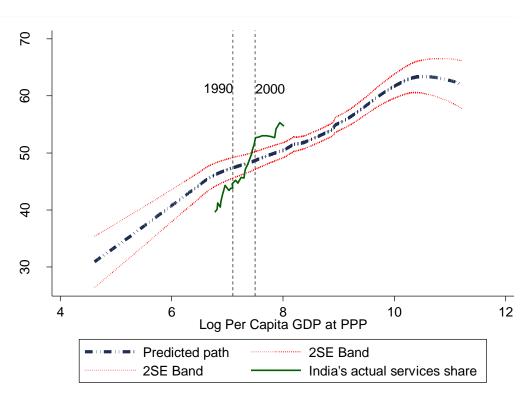
Test: Var(u) = 0

<u>chibar2(01)</u> = 29076.72 Prob > chibar2 = (0.0000)

	Coeffi	cients ———		
	(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>
	fe	re	Difference	S.E.
lngdpc_pp	332.9264	352.3767	-19.45025	13.70544
lngdp_pp2	-60.60611	-64.61057	4.00446	2.695435
lngdp_pp3	4.906946	5.26195	3550045	.2279756
lngdp_pp4	1477659	1590866	.0113207	.0070114
lngdp_90s	.3742022	.3669355	.0072667	.0051062
lngdp_20s	.6419146	.6244614	.0174533	.0128005

b = consistent under Ho and Ha; obtained from xtree

B = inconsistent under Ha, efficient under Ho; obtained from xtree


Test: Ho: difference in coefficients not systematic

Prediction

STATA Commands:

- Prediction fitted value including individual-specific effects predict yhat, xbu
- Prediction standard error of the fitted values predict se, stdp
- Prediction standard error band gen up_se=yhat+2*se gen low_se=yhat-2*se
- Lowess Curve

twoway (lowess yhat Ingdpc_pp)(lowess up_se Ingdpc_pp) (lowess low_se Ingdpc_pp)(line ser_sh Ingdpc_pp if (con cod==50))

To produce robust standard error estimates for linear panel models

Command	Option	SE estimates are robust to dis- turbances being	Notes
reg, xtreg	robust	heteroscedastic	
reg, xtreg	cluster()	heteroscedastic and autocorre- lated	
xtregar		autocorrelated with $AR(1)^1$	
newey		heteroscedastic and autocorrelated of type $MA(q)^2$	
xtgls	<pre>panels(), corr()</pre>	heteroscedastic, contemporane- ously cross-sectionally correlat- ed, and autocorrelated of type AR(1)	N < T required for fea- sibility; tends to produce optimistic SE estimates
xtpcse	correla- tion()	heteroscedastic, contemporane- ously cross-sectionally correlat- ed, and autocorrelated of type AR(1)	large-scale panel regres- sions with xtpcse take a lot of time
xtscc		heteroscedastic, autocorrelated with $MA(q)$, and cross-sectio- nally dependent	

 1 AR(1) refers to first-order autoregression

² MA(q) denotes autocorrelation of the moving average type with lag length q.

References

- Panel data analysis, Princeton University, http://dss.princeton.edu/training/
- Econometric Academy by Ani Katchova, <u>https://sites.google.com/site/econometricsacademy/econometrics-models</u>
- Introduction to Regression Models for Panel Data Analysis, Indiana University by Prof. Patricia A. McManus, <u>http://www.indiana.edu/~wim/docs/10_7_2011_slides.pdf</u>
- Econometric analysis using Panel Data by Ranjit Kumar Paul, <u>http://www.iasri.res.in/sscnars/socialsci/12-Panel%20data.pdf</u>
- Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence by Daniel Hoechle, <u>http://fmwww.bc.edu/repec/bocode/x/xtscc_paper.pdf</u>
- Two Waves of Services Growth by Poonam Gupta and Barry Eichengreen, NBER Working Paper no. 14968, <u>http://www.nber.org/papers/w14968.pdf</u>

Thank You

Gunajit Kalita

Gunajit.kalita@riotinto.com

gunajitkalita1984@gmail.com

My Blog: http://macroscan.wordpress.com/