Causal mediation analysis using Stata

Joerg Luedicke

Senior Social Scientist and Software Developer

StataCorp

June 16, 2023 Berlin

Causal inference and mediation

- The goal of causal inference is to identify and quantify the effect of some treatment (exposure) on some outcome.
- With causal mediation, we can disentangle causal effects into direct and indirect effects.
- By decomposing causal effects into direct and indirect effects, we are targeting the underlying mechanism of causal relations.
- In other words, we use causal mediation to learn about why certain causes have the effect they have.

Causal diagram illustration

• Simple causal model for the effect of T on Y:

• Causal model for the effect of T on Y through M:

Mediation model with a direct and an indirect effect:

Potential outcomes framework (1)

- Consider a simple randomized experiment with binary treatment *T* and outcome *Y*, with sample observations *i* = 1...*N*.
- We wish to identify two sets of potential outcomes, $Y_i(1)$ and $Y_i(0)$, where $Y_i(t)$ is the outcome that would be realized if the *i*th individual were exposed to treatment level *t*.
- If it were possible to observe an individual in both states at the same time, we would observe one outcome value under treatment, Y_i(1), and one value under the control condition, Y_i(0).
- The (individual-level) treatment effect would then be the difference $\tau_i = Y_i(1) Y_i(0)$.
- In other words, there is a potential outcome for each treatment level that could be administered.
- Averaging the difference over all individuals in the sample would yield an estimate of the ATE

$$\tau = E[Y_i(1) - Y_i(0)] = E[Y_i(1)] - E[Y_i(0)].$$

Potential outcomes framework (2)

- As we know, it is not possible to observe the same individual under both conditions at the same time.
- We can only observe one of these while the other is missing.
- If an individual is treated, we observe $Y_i(1)$, and if not, we observe $Y_i(0)$.
- This has been coined the "fundamental problem of causal inference"
- Much of the treatment effects and causal inference literature deals with the question of how to estimate an ATE in the presence of this problem.
- In a simple experiment where treatment is randomly assigned, the potential outcomes are independent of treatment assignment and the missing potential outcomes are missing completely at random.
- In this case, the difference in sample averages of the outcome for each group provide a consistent estimator of ATE.
- With observational rather than experimental data the potential outcomes are not independent of the treatment assignment process, and the causal effect is not identifiable without imposing further assumptions such as conditional independence.
- Stata's teffects suite of commands provides a variety of estimators from this class of treatment-effects estimators.

Potential outcome framework for causal mediation

- Now consider the case where we have a mediator *M* in addition to treatment *T* and outcome *Y*.
- We now have an additional set of potential outcomes, $M_i(1)$ and $M_i(0)$, because M is also causally related to the treatment.
- *M_i*(1) are the potential outcomes of the mediator that would be observed had the *i*th individual been assigned to the group of active treatment.
- *M_i*(0) are the potential outcomes of the mediator that would be observed had the *i*th individual been assigned to the control group.
- Let *t* be the treatment level with respect to the outcome, and let t' be the treatment level with respect to the mediator, the potential outcomes become $Y_i[t, M_i(t')]$.

Causal mediation potential outcomes (1)

- With binary treatment, we now have four sets of potential outcomes: Y_i[0, M_i(0)], Y_i[1, M_i(1)], Y_i[1, M_i(0)] and Y_i[0, M_i(1)].
- **Y**_{*i*}[**0**, **M**_{*i*}(**0**)] is observed if T_{*i*} = 0.
- **Y**_{*i*}[1, **M**_{*i*}(1)] is observed if *T*_{*i*} = 1.
- **Y**_i[**0**, **M**_i(**0**)] are the potential outcomes that we would observe if nobody in the population received treatment.
- **Y**_{*i*}[1, **M**_{*i*}(1)] are the potential outcomes that we would observe if everybody in the population received treatment.
- Notice that $Y_i[0, M_i(0)] = Y_i(0)$ and $Y_i[1, M_i(1)] = Y_i(1)$

Causal mediation potential outcomes (2)

- **Y**_i[1, **M**_i(0)] and **Y**_i[0, **M**_i(1)], sometimes referred to as cross-world potential outcomes, are never observed.
- **Y**_i[1, **M**_i(0)] are the potential outcomes that we would observe if everybody in the population received treatment, but where the mediator is held at a value that would be observed as though nobody in the population received treatment.
- Y_i[0, M_i(1)] are the potential outcomes that we would observe if nobody in the population received treatment, but where the mediator is held at a value that would be observed as though everybody in the population received treatment.

Direct, indirect, and total treatment effects

- Average direct, indirect, and total treatment effects are contrasts between potential outcome means.
- The total effect is:

 $\tau \equiv E[Y_i(1)] - E[Y_i(0)] = E[Y_i(1, M_i(1))] - E[Y_i(0, M_i(0))]$

 The effect of the treatment on the outcome through the mediator is the indirect effect:

$$\delta(t) \equiv E[Y_i(t, M_i(1))] - E[Y_i(t, M_i(0))], \quad t \in \{0, 1\}$$

• The direct effect of the treatment is:

$$\zeta(t) \equiv E[Y_i(1, M_i(t))] - E[Y_i(0, M_i(t))], \quad t \in \{0, 1\}$$

Notice that the total effect is the sum of direct and indirect effects

$$\tau = \delta(t) + \zeta(t)$$

Two treatment effect decompositions

- If we include a treatment-mediator interaction, the total treatment effect can be decomposed in two different ways.
- We can decompose the total effect using components $\delta(0) \equiv E[Y_i(0, M_i(1))] E[Y_i(0, M_i(0))]$ and $\zeta(0) \equiv E[Y_i(1, M_i(0))] E[Y_i(0, M_i(0))]$
- ... as well as $\delta(1) \equiv E[Y_i(1, M_i(1))] - E[Y_i(1, M_i(0))]$ and $\zeta(1) \equiv E[Y_i(1, M_i(1))] - E[Y_i(0, M_i(1))]$
- If we do not include a treatment-mediator interaction, i.e., we impose the assumption that the effect of the mediator on the outcome does not vary across treatment groups, we have that δ(0) = δ(1) and ζ(0) = ζ(1).

Estimands

Denoting *E*[*Y_i*(*t*, *M_i*(*t'*))] as *Y<sub>tM_{t'}*, we define the following treatment effects of interest
</sub>

(Total) natural indirect effect (NIE)	$Y_{1M_1} - Y_{1M_0}$
(Pure) natural direct effect (NDE)	$Y_{1M_0} - Y_{0M_0}$
(Pure) natural indirect effect (PNIE)	$Y_{0M_1} - Y_{0M_0}$
(Total) natural direct effect (TNDE)	$Y_{1M_1} - Y_{0M_1}$
Total effect (TE)	$Y_{1M_1} - Y_{0M_0}$

How to identify potential outcome means?

• The potential-outcome means are the result of an integral of the conditional expectation of the outcome with respect to the conditional distribution of the mediator:

$$f[Y_i(t, M_i(t')) | \mathbf{X}_i = \mathbf{x}] = \int f[Y_i | M_i = m, T_i = t, \mathbf{X}_i = \mathbf{x}] dF[m|T_i = t', \mathbf{X}_i = \mathbf{x}]$$

- This is sometimes referred to as the "mediation formula".
- It expresses the potential outcomes as a function of the conditional distribution of *M_i* given *T_i* and *X_i*, and that of *Y_i* given *M_i*, *T_i*, and *X_i*.
- Notice that this is a nonparametric identification result.

Assumptions for identifying estimands of interest

SUTVA, overlap, sequential ignorability

- Sequential ignorability essentially means
 - No unobserved confounding in the treatment-outcome relationship.
 - No unobserved confounding in the mediator-outcome relationship.
 - No unmeasured confounding in the treatment-mediator relationship.
 - There are no (observed) confounders in the mediator-outcome relationship that are caused by the treatment.

Illustrative example using a linear model (1)

• Suppose we have the following model with two equations:

$$Y_i = \beta_0 + \beta_1 M_i + \beta_2 T_i + \epsilon_i$$
$$M_i = \alpha_0 + \alpha_1 T_i + \nu_i$$

- To calculate the natural indirect effect (NIE), we need estimates for potential-outcome means E[Y_i(1, M_i(1))] and E[Y_i(1, M_i(0))].
- With the linear model, we can write the model in reduced form and yield the conditional expectation of outcome *Y*:

$$E[Y_i|M_i, T_i] = \beta_0 + \beta_1(\alpha_0 + \alpha_1 T_i) + \beta_2 T_i$$

= $\beta_0 + \beta_1 \alpha_0 + \beta_1 \alpha_1 T_i + \beta_2 T_i$

• To obtain the potential-outcome means, we can modify the reduced-form model by replacing *M_i* with the expectation of *M_i* that we would observe if *T_i* had taken on the value *t'* for every unit in the population:

$$E[Y_i(t, M_i(t'))] = \beta_0 + \beta_1 E[M_i(t')] + \beta_2 t, \quad t \in \{0, 1\}$$

Illustrative example using a linear model (2)

Now, to compute the potential-outcome mean *E*[*Y_i*(1, *M_i*(1))], we must set the treatment *T_i* to 1 in both the outcome and the mediator equations. In other words, we fix both *t* and *t'* at 1:

$$E[Y_{i}(1, M_{i}(1))] = \beta_{0} + \beta_{1}E[M_{i}(t')] + \beta_{2}t, \quad t = t' = 1$$

= $\beta_{0} + \beta_{1}\alpha_{0} + \beta_{1}\alpha_{1} \times 1 + \beta_{2} \times 1$
= $\beta_{0} + \beta_{1}\alpha_{0} + \beta_{1}\alpha_{1} + \beta_{2}$

To compute *E*[*Y_i*(1, *M_i*(0))], we need to set treatment *T_i* to 1 in the outcome equation but set it to 0 in the mediator equation.
 Specifically, we fix *t'* = 0 and *t* = 1:

$$E[Y_i(1, M_i(0))] = \beta_0 + \beta_1 E[M_i(t')] + \beta_2 t, \quad t = 1; \ t' = 0$$

= $\beta_0 + \beta_1 \alpha_0 + \beta_1 \alpha_1 \times 0 + \beta_2 \times 1$
= $\beta_0 + \beta_1 \alpha_0 + \beta_2$

Illustrative example using a linear model (3)

Calculating the difference yields the indirect treatment effect

$$\delta(1) = (\beta_0 + \beta_1 \alpha_0 + \beta_1 \alpha_1 + \beta_2) - (\beta_0 + \beta_1 \alpha_0 + \beta_2)$$
$$= \beta_0 + \beta_1 \alpha_0 + \beta_1 \alpha_1 + \beta_2 - \beta_0 - \beta_1 \alpha_0 - \beta_2$$
$$= \beta_1 \alpha_1$$

- We are left with the product of the treatment coefficient from the mediator equation and the mediator coefficient from the outcome equation.
- This is congruent with the classical product-of-coefficients method.
- Had we included a treatment-mediator interaction, the result would be δ(1) = (β₁ + β₃)α₁.
- Not as simple for models other than the linear model.

Stata's mediate command

- New in Stata 18: mediate
- mediate performs causal mediation analysis for linear and generalized linear models.
- It uses analytical expressions to compute potential outcome means based on parametric models.
- Outcome and mediator variables may be continuous, binary, or count.
- Treatment may be binary, multivalued, or continuous.
- Linear, logit, probit, Poisson, and exponential-mean models for outcome and mediator.
- Special-purpose postestimation commands.

Outcome and mediator model combinations

	linear	logit	probit	Poisson	exp. mean
linear	х	X	x	х	X
logit		Х	x	х	
probit	х	X	x	х	Х
Poisson	х	X	x	х	Х
exp. mean	x	Х	x	x	X

Note: x indicates supported model combination

Postestimation commands

Special-purpose postestimation commands include

- estat proportion
- estat cde
- estat rr
- estat or
- ▶ estat irr
- estat effectsplot plot treatment effects

proportion mediated controlled direct effects treatment effects as risk ratios treatment effects as odds ratios treatment effects as incidence-rate ratios plot treatment effects

Treatment effects on different scales (1)

- If the outcome is binary, and if the outcome model is either logit or probit, we can express the treatment effects as risk ratios or odds ratios.
- If the outcome model is Poisson/exponential mean, treatment effects can be expressed as incidence-rate ratios.
- The treatment effects on risk-ratio and incidence-rate-ratio scales are ratios of potential-outcome means:

$$\begin{split} \text{NIE}^{\text{RR}} &\equiv Y_{1M_{1}}/Y_{1M_{0}} \\ \text{NDE}^{\text{RR}} &\equiv Y_{1M_{0}}/Y_{0M_{0}} \\ \text{PNIE}^{\text{RR}} &\equiv Y_{0M_{1}}/Y_{0M_{0}} \\ \text{INDE}^{\text{RR}} &\equiv Y_{1M_{1}}/Y_{0M_{1}} \\ \text{TE}^{\text{RR}} &\equiv Y_{1M_{1}}/Y_{0M_{0}} \end{split}$$

Treatment effects on different scales (2)

 For logit and probit outcome models, Y_{tM_t} are probabilities, and so the treatment effects on odds-ratio scale are

$$\begin{split} \text{NIE}^{\text{OR}} &\equiv Y_{1M_1}/(1-Y_{1M_1})/\{Y_{1M_0}/(1-Y_{1M_0})\} \\ \text{NDE}^{\text{OR}} &\equiv Y_{1M_0}/(1-Y_{1M_0})/\{Y_{0M_0}/(1-Y_{0M_0})\} \\ \text{PNIE}^{\text{OR}} &\equiv Y_{0M_1}/(1-Y_{0M_1})/\{Y_{0M_0}/(1-Y_{0M_0})\} \\ \text{TNDE}^{\text{OR}} &\equiv Y_{1M_1}/(1-Y_{1M_1})/\{Y_{0M_1}/(1-Y_{0M_1})\} \\ \text{TE}^{\text{OR}} &\equiv Y_{1M_1}/(1-Y_{1M_1})/\{Y_{0M_0}/(1-Y_{0M_0})\} \end{split}$$

 Notice that for all of these scales, the decomposition becomes multiplicative; that is, the total effect becomes the product of direct and indirect effects.

Controlled direct effects

- A controlled direct effect (CDE) is the effect of a treatment on an outcome when the mediator is fixed at a particular value.
- To estimate controlled direct effects, we use only the results of the outcome equation.
- Rather than having potential outcomes of the form Y_i(t, M_i(t')), here we have potential outcomes Y_i(t|M_i = m).
- That is, we have potential outcomes for each treatment level *t* that are evaluated at value *m* of the mediator.
- CDE(m) is then the average of the differences between potential outcomes.
- For binary treatment, CDE(m) is defined as $Y_i(1|M_i = m) Y_i(0|M_i = m)$.
- Letting Y_{tm} be a shorthand for $Y_i(t|M_i = m)$, we have that

$$\begin{array}{l} \text{CDE(m)} \equiv \, Y_{1m} - \, Y_{0m} \\ \text{CDE(m)}^{\text{RR}} \equiv \, Y_{1m} / \, Y_{0m} \\ \text{CDE(m)}^{\text{IRR}} \equiv \, Y_{1m} / \, Y_{0m} \\ \text{CDE(m)}^{\text{OR}} \equiv \, Y_{1m} / (1 - \, Y_{1m}) / \{ \, Y_{0m} / (1 - \, Y_{0m}) \} \end{array}$$

Example data (1)

. webuse wellbeing (Fictional well-being data)

. list wellbeing bonotonin exercise age gender in 1/5, abbreviate(12) clean

	wellbeing	bonotonin	exercise	age	gender
1.	71.73816	196.5467	Control	58	Male
2.	68.66573	195.8572	Exercise	38	Female
3.	71.05155	228.6035	Exercise	53	Female
4.	69.44469	206.6651	Exercise	44	Female
5.	75.62035	261.6855	Exercise	28	Female

Linear models with no treatment-mediator interaction

. mediate (wellbeing) (bonotonin) (exercise), nointeraction

Iteration 0: EE criterion = 6.800e-28 Iteration 1: EE criterion = 1.777e-28

Causal mediation analysis

Number of obs = 2,000

Outcome model: Linear Mediator model: Linear Mediator variable: bonotonin Treatment type: Binary

wellbeing	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
NIE exercise (Exercise vs						
Control)	9.694617	.377312	25.69	0.000	8.955099	10.43413
NDE exercise (Exercise vs Control)	2.996658	.2109357	14.21	0.000	2.583231	3.410084
TE exercise (Exercise vs Control)	12.69127	.4005769	31.68	0.000	11.90616	13.47639

Proportion mediated

. estat proportion

Proportion mediated

Number of obs = 2,000

wellbeing	Proportion	Robust std. err.	z	P> z	[95% conf.	interval]
exercise (Exercise vs Control)	.7638805	.0154928	49.31	0.000	.7335151	.7942459

Linear models with treatment-mediator interaction

	llbeing basewe notonin basebo ercise)				/// ///	
Iteration 0: Iteration 1:						
Causal mediat:	ion analysis				Number of c	bs = 2,000
Outcome model Mediator mode Mediator varia Treatment type	l: Linear able: bonotoni	n				
wellbeing	Coefficient	Robust std. err.	z	₽> z	[95% conf.	interval]
NIE exercise (Exercise vs Control)	10.02204	.2256812	44.41	0.000	9.579717	10.46437
NDE exercise (Exercise vs Control)	3.085412	.168631	18.30	0.000	2.754901	3.415922
TE exercise (Exercise vs						
Control)	13.10746	.2304752	56.87	0.000	12.65573	13.55918

Estimating potential outcome means

. mediate (wellbeing basewell age gender hstatus) (bonotonin basebono age gender hstatus) (exercise), pom Iteration 0: EE criterion = 2.050e-27 Iteration 1: EE criterion = 2.775e-28 Causal mediation analysis Number of obs = 2,000Outcome model: Linear Mediator model: Linear Mediator variable: bonotonin Treatment type: Binary Robust wellbeing Coefficient std. err. z P>|z| [95% conf. interval] POmeans YOMO 56.89975 .228515 249.00 0.000 56.45187 57.34763 Y1M0 59.98516 .2555341 234.74 0.000 59.48432 60.486 YOM1 66.83246 .2644294 252.74 0.000 66.31419 67.35073

302.51

0.000

69.55363

70.46077

.2314185 Note: Outcome equation includes treatment-mediator interaction.

70.0072

Y1M1

Estimating all effects and potential outcome means

. mediate > >	(wellbeing basewell (bonotonin basebono (exercise), all	age gender hstatus) age gender hstatus)	//
	0: EE criterion = 1: EE criterion =		

Causal mediation analysis

Number of obs = 2,000

Outcome model: Linear Mediator model: Linear Mediator variable: bonotonin Treatment type: Binary

wellbeing	Coefficient	Robust std. err.	z	₽> z	[95% conf.	interval]
POmeans						
YOMO	56.89975	.228515	249.00	0.000	56.45187	57.34763
Y1M0	59.98516	.2555341	234.74	0.000	59.48432	60.486
Y0M1	66.83246	.2644294	252.74	0.000	66.31419	67.35073
Y1M1	70.0072	.2314185	302.51	0.000	69.55363	70.46071
NIE						
exercise						
(Exercise						
vs						
Control)	10.02204	.2256812	44.41	0.000	9.579717	10.46437
NDE						
exercise						
(Exercise						
vs						
Control)	3.085412	.168631	18.30	0.000	2.754901	3.415922
PNIE						
exercise						
(Exercise						
vs						
Control)	9.932713	.2290178	43.37	0.000	9.483846	10.38158
TNDE						
exercise						
(Exercise						
VS						
Control)	3.174743	.1808011	17.56	0.000	2.820379	3.529107
TE						
exercise						
(Exercise						
vs						
Control)	13.10746	2304752	56 87	0.000	12.65573	13.55918

Auxiliary parameters

. mediate, aequations

Causal mediation analysis Outcome model: Linear Mediator model: Linear Mediator variable: bonotonin Number of obs = 2,000

		Robust				
wellbeing	Coefficient	std. err.	z	P> z	[95% conf.	interval
POmeans						
YONG	56.89975	.228515	249.00	0.000	56.45187	57.3476
Y1M0 Y0M1	59.98516 66.83246	.2555341	234.74	0.000	59.48432 66.31419	60.48
YIMI	70.0072	.2314185	302.51	0.000	69.55363	70.4607
NIE						
exercise						
(Exercise						
VS Control)	10.02204	.2256812	44.41	0.000	9.579717	10.4643
wor.						
exercise						
(Exercise						
VS						
Control)	3.085412	.168631	18.30	0.000	2.754901	3.41592
PNIE						
exercise (Exercise						
(LX0FC150						
Control)	9.932713	.2290178	43.37	0.000	9.483846	10.3815
TNDE						
exercise						
(Exercise						
VS	3.174743			0.000	2.820379	3.52910
Control)	3.174743	.1808011	17.56	0.000	2.820379	3.52910
TE						
exercise (Exercise						
(LX0FC150						
Control)	13.10746	.2304752	56.87	0.000	12.65573	13.5591
wellbeing						
exercise						
Exercise	2.777685	.6449446	4.31	0.000	1.513616	4.04175
bonotonin	.2141319	.0026418	81.05	0.000	.208954	.219309
exercise#						
Exercise	.0019258	0034941	0.55	0.582	- 0049774	.008774
basewell	.1685634	.0038294	44.02	0.000	.1610579	.176068
age	.0266714	.0072856	3.66	0.000	.012392	.040950
gender	1031899	.1282411	-0.80	0.421	3545379	.148158
_cons	9.508461	.5918832	16.06	0.000	8.348391	10.6685
bonotonin						
exercise						
Exercise	46.38595	.8963335	51.75	0.000	44.62916	48.1421
basebono	1.019825	.0154741	65.91	0.000	.9894966	1.05015
age	.368765	.049656	7.43	0.000	.271441	.46608
gender hstatus	5.648102	.8946093	6.31	0.000	3.8947 2.613164	7.40150
			6.84			

Binary outcome and mediator

	ellbeing basew onotonin basek ercise), noint	ono age gen				
Iteration 0: Iteration 1:						
Causal mediat:	ion analysis				Number of o	bs = 2,000
Outcome model Mediator mode Mediator varia Treatment type	l: Logit able: bbonotor	iin				
		Robust				
bwellbeing	Coefficient	std. err.	Z	₽> z	[95% conf.	interval]
NIE exercise (Exercise vs Control)	.1053001	.0142631	7.38	0.000	.0773449	.1332553
NDE exercise (Exercise vs Control)	.1528838	.0189013	8.09	0.000	.115838	.1899296
TE exercise (Exercise vs Control)	.2581839	.014312	18.04	0.000	.2301328	.286235

Treatment effects as risk ratios

. estat rr

estat rr requires potential-outcome means; refitting model ...

Transformed treatment effects Number of obs = 2,000

bwellbeing	Risk ratio	Robust std. err.	Z	P> z	[95% conf.	interval]
NIE exercise (Exercise vs Control)	1.22985	.0383193	6.64	0.000	1.156993	1.307295
NDE exercise (Exercise vs Control)	1.500861	.0714322	8.53	0.000	1.367188	1.647603
TE exercise (Exercise vs Control)	1.845833	.0706637	16.01	0.000	1.712403	1.98966

Treatment effects as odds ratios

. estat or

estat or requires potential-outcome means; refitting model ...

Transformed treatment effects Number of obs = 2,000

bwellbeing	Odds ratio	Robust std. err.	Z	P> z	[95% conf.	interval]
NIE exercise (Exercise vs Control)	1.526485	.087768	7.36	0.000	1.363802	1.708575
	1.520405	.007700	/.50		1.505002	1.700575
NDE exercise (Exercise vs Control)	1.924312	.1529157	8.24	0.000	1.646777	2.248621
TE exercise (Exercise vs						
Control)	2.937434	.1841548	17.19	0.000	2.597791	3.321482

Example data (2)

. webuse birthweight (Fictional birthweight data)

. list bweight noigs college ses sespar age in 1/5, clean

	bweight	ncigs	college	ses	sespar	age
1.	3621	1	No	5.3581	3.308523	29
2.	3278	0	Yes	9.556957	4.376035	38
3.	3073	1	No	3.980829	6.580275	39
4.	3306	0	Yes	11.17643	12.12075	30
5.	4517	0	Yes	9.026146	4.738766	28

Exponential mean and Poisson models

. mediate (bweight sespar c.age##c.age, expmean) ///
> (ncigs sespar c.age##c.age, poisson) ///
> (college], nointeract
Iteration 0: EE criterion = 3.250e-13
Iteration 1: EE criterion = 9.147e-18
Causal mediation analysis Number of obs = 2,000
Outcome model: Exponential mean
Mediator wariable: Poisson
Mediator variable: ncigs

Treatment type: Binary

bweight	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
NIE						
college (Yes vs No)	198.978	23.53279	8.46	0.000	152.8546	245.1014
NDE						
college (Yes vs No)	320.3318	34.47792	9.29	0.000	252.7563	387.9072
TE						
College (Yes vs No)	519.3098	28.70435	18.09	0.000	463.0503	575.5693

Estimating incidence-rate ratios

. estat irr

estat irr requires potential-outcome means; refitting model ...

Transformed treatment effects

Number of obs = 2,000

k	oweight	IRR	Robust std. err.	z	₽> z	[95% conf.	interval]
NIE							
(Yes t	college /s No)	1.057819	.0072037	8.25	0.000	1.043794	1.072033
NDE							
(Yes t	college /s No)	1.102636	.0113921	9.46	0.000	1.080533	1.125192
TE							
(Yes t	college /s No)	1.16639	.009948	18.05	0.000	1.147055	1.186052

Estimating controlled direct effects

. estat cde, mvalue(0 1)

Controlled direct effect

Number of obs = 2,000

Mediator variable: ncigs
Mediator values:
1._at: ncigs = 0

2._at: ncigs = 1

	I CDE	Delta-method std. err.	z	₽> z	[95% conf.	interval]
college@_at (Yes vs No) 1	341.955	35.26807	9.70	0.000	272.8308	411.0791
(Yes vs No) 2	332.6419	34.94916	9.52	0.000	264.1428	401.141

Estimating differences between controlled direct effects

. estat cde, mvalue(0 1) contrast

Controlled direct effect

Number of obs = 2,000

Mediator variable: ncigs Mediator values: 1._at: ncigs = 0 2._at: ncigs = 1

	CDE	Delta-method std. err.	z	₽> z	[95% conf.	interval]
_at#college (2 vs 1) (Yes vs No)	-9.313066	.9748033	-9.55	0.000	-11.22365	-7.402487

More treatment interactions

<pre>. mediate (bweight sespar c.age##c.age > i.college#(c.sespar c.age##c.age), > (ncigs c.sespar c.age##c.age</pre>	/// expmean) /// ///
<pre>> i.college#(c.sespar c.age##c.age), > (college)</pre>	
Iteration 0: EE criterion = 1.691e-12 Iteration 1: EE criterion = 1.122e-14	
Causal mediation analysis	Number of obs = $2,000$
Outcome model: Exponential mean	
Mediator model: Poisson	
Mediator variable: ncigs	
Treatment type: Binary	

	bweight	Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
NIE							
(Yes	college vs No)	111.6007	67.53715	1.65	0.098	-20.76971	243.971
NDE							
(Yes	college vs No)	407.5962	72.49614	5.62	0.000	265.5063	549.686
TE							
(Yes	college vs No)	519.1968	28.71853	18.08	0.000	462.9095	575.4841

Mediator interactions

Mediator variable: ncigs Treatment type: Binary

	bweight	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
NIE	college						
(Yes	vs No)	86.26849	68.96645	1.25	0.211	-48.90328	221.4403
NDE	college						
(Yes	vs No)	431.5822	73.70305	5.86	0.000	287.1269	576.0375
TE							
(Yes	college vs No)	517.8507	28.64809	18.08	0.000	461.7015	573.9999

Multivalued treatment

	llbeing age ge notonin basebo kercise)		/// ///			
Iteration 0: Iteration 1:						
Causal mediat:	ion analysis				Number of o	bs = 2,000
Outcome model Mediator mode Mediator varia Treatment type	l: Linear able: bonotoni					
wellbeing	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
NIE mexercise (45 minutes vs						
Control) (90 minutes vs	5.128899	.3505171	14.63	0.000	4.441898	5.815899
Control)	9.780537	.2880877	33.95	0.000	9.215895	10.34518
NDE mexercise (45 minutes vs						
Control) (90 minutes	1.197498	.1750038	6.84	0.000	.8544965	1.540499
Control)	3.051084	.2071236	14.73	0.000	2.645129	3.457039
TE mexercise (45 minutes vs						
Control) (90 minutes	6.326396	.3894269	16.25	0.000	5.563134	7.089659
Control)	12.83162	.2967962	43.23	0.000	12.24991	13.41333

Continuous treatment

```
. webuse birthweight
(Fictional birthweight data)
. qui sum ses
. generate std_ses = (ses-r(mean))/r(sd)
. mediate (bweight sespar c.age##c.age, expmean) ///
          (ncigs sespar c.age##c.age, poisson)
>
          (std_ses, continuous(0 2)), nointeract
>
Iteration 0: EE criterion = 1.470e-12
Iteration 1: EE criterion = 1.816e-17
Causal mediation analysis
                                                         Number of obs = 2,000
Outcome model:
                  Exponential mean
Mediator model:
                 Poisson
Mediator variable: ncigs
                   Continuous
Treatment type:
Continuous treatment levels:
  0: std_ses = 0 (control)
 1: std_ses = 2
```

bweight	Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
NIE std_ses (1 vs 0)	110.1346	8.724232	12.62	0.000	93.03538	127.2337
NDE std_ses (1 vs 0)	180.0172	34.77372	5.18	0.000	111.8619	248.1724
TE std_ses (1 vs 0)	290.1517	33.85571	8.57	0.000	223.7958	356.5077

Continuous treatment with multiple evaluation points

```
. mediate (bweight sespar c.age##c.age, expmean) ///
> (ncigs sespar c.age##c.age, poisson) ///
```

> (std_ses, continuous(0 -2 -1 1 2)), nointeract

Iteration 0: EE criterion = 1.470e-12 Iteration 1: EE criterion = 2.374e-17

Causal mediation analysis

Number of obs = 2,000

Outcome model: Exponential mean Mediator model: Poisson Mediator variable: ncigs Treatment type: Continuous

Continuous treatment levels:

0: std_ses = 0 (control) 1: std_ses = -2 2: std_ses = -1 3: std_ses = 1 4: std_ses = 2

bweight	Coefficient	Robust std. err.	z	₽> z	[95% conf	. interval]
NIE						
std_ses						
(1 vs 0)	-276.2757	27.69004	-9.98	0.000	-330.5471	-222.0042
(2 vs 0)	-100.1155	9.170566	-10.92	0.000	-118.0894	-82.14148
(3 vs 0)	65.84585	5.423096	12.14	0.000	55.21678	76.47493
(4 vs 0)	110.1346	8.724232	12.62	0.000	93.03538	127.2337
NDE						
std_ses						
(1 vs 0)	-170.9012	31.33649	-5.45	0.000	-232.3196	-109.4828
(2 vs 0)	-86.56069	16.08129	-5.38	0.000	-118.0794	-55.04193
(3 vs 0)	88.83929	16.94031	5.24	0.000	55.6369	122.0417
(4 vs 0)	180.0172	34.77372	5.18	0.000	111.8619	248.1724
TE						
std_ses						
(1 vs 0)	-447.1769	35.41401	-12.63	0.000	-516.5871	-377.7667
(2 vs 0)	-186.6761	15.73291	-11.87	0.000	-217.5121	-155.8402
(3 vs 0)	154.6851	16.31969	9.48	0.000	122.6991	186.6712
(4 vs 0)	290.1517	33.85571	8.57	0.000	223.7958	356.5077

Note: Outcome equation does not include treatment-mediator interaction.

. estat effectplot

(StataCorp)

Plotting treatment effects

Learn more: https://www.stata.com/manuals/causalmediate.pdf Thank you!