#### mfcurve: Visualizing Results From Multifactorial Designs

Daniel Krähmer LMU Munich

2023 German Stata Conference Berlin | 16 June





Funding by the DFG through the Priority Program META-REP (Project 464507200) is gratefully acknowledged.

## The Classical Experimental Research Design

Estimand: Main effect of one particular treatment



# Multifactorial Research Designs

Estimand: Joint effect of several treatments



# Multifactorial Research Designs

Estimand: Joint effect of several treatments



Multifactorial Research Designs Are...

... epistemologically useful,

... versatile & wide-spread,



Multifactorial Research Designs Are...

... epistemologically useful,

... versatile & wide-spread,

... but difficult to visualize, due to the spiraling number of treatment conditions → Potential remedy: mfcurve



## Command mfcurve: Basics

#### mfcurve depvar, factors(indepvar) [options]

Input

- Outcome, i.e. dependent variable
- Factors, i.e. independent variables

5 / 11

### Command mfcurve: Basics

#### mfcurve depvar, factors(indepvar) [options]

Input

- Outcome, i.e. dependent variable
- Factors, i.e. independent variables

**Example**: Average hourly wage across groups defined by race, region, and union membership (descriptive)

# Command mfcurve: Basics

#### mfcurve depvar, factors(indepvar) [options]

Input

- Outcome, i.e. dependent variable
- Factors, i.e. independent variables

**Example**: Average hourly wage across groups defined by race, region, and union membership (descriptive)

sysuse nlsw88, clear mfcurve wage, ///

factors (race south union)



# Command mfcurve: Options

| Options                                                                                                               | Description                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <pre>groupvar(varname) test(mean zero) level(#) show(show_options) boxplot style(marker_options) twoway_options</pre> | <pre>specify group identifier perform significance tests set confidence level add elements to the plot (see below) use boxplots instead of point estimates customize graph elements twoway options, other than by()</pre> |
| show_options                                                                                                          | Description                                                                                                                                                                                                               |
| mean<br>sig<br>ci_regular<br>ci_gradient<br>groupsize                                                                 | add a horizontal mean line<br>highlight significant estimates<br>add CIs, using solid lines<br>add CIs, using color gradients<br>add case numbers to the x-axis                                                           |

**Working Paper:** Care to Share? Experimental Evidence on Code Sharing Behavior in the Social Sciences



Working Paper:

Care to Share? Experimental Evidence on Code Sharing Behavior in the Social Sciences

- (?) What determines researchers' willingness to share analysis code upon request?
- Field experiment including more than 1,200 researchers across the social sciences
- $\$  Experimental variation of the code request's wording



Working Paper:

Care to Share? Experimental Evidence on Code Sharing Behavior in the Social Sciences

- (?) What determines researchers' willingness to share analysis code upon request?
- Field experiment including more than 1,200 researchers across the social sciences
- Section 2 Experimental variation of the code request's wording







- + Transparent reporting of all results
- + Ranking of interventions by effectiveness
- $\sim~$  Readability
- $\sim~$  Main effects
- $\sim~$  Interaction effects

By The Way



Software usage among authors who shared their code (n = 385)

Software

Multifactorial Design

Command: mfcurve

# Summary

- Multifactorial research designs are popular across disciplines
- They are notoriously difficult to visualize
- mfcurve may provide a solution to handle multidimensionality
- May also be used for simple *n*-dimensional description
- Installation from GitLab:

net install mfcurve, from("https://tinyurl.com/mfcurve")



# Thanks for your time! Your comments and suggestions are appreciated.



@dkraehmer@sciences.social

daniel.kraehmer@soziologie.uni-muenchen.de

Project Homepage:



Preparatory work:

| race  | south     | union    |  |
|-------|-----------|----------|--|
| Black | Not South | Union    |  |
| Black | Not South | Nonunion |  |
| Black | South     | Union    |  |
| Black | South     | Nonunion |  |
| White | Not South | Union    |  |
| White | Not South | Nonunion |  |
| • • • |           |          |  |

Preparatory work:

• Define distinct groups in the *n*-dimensional space defined by variables in factor(...)

| race  | south     | union    | group |
|-------|-----------|----------|-------|
| Black | Not South | Union    | 1     |
| Black | Not South | Nonunion | 2     |
| Black | South     | Union    | 3     |
| Black | South     | Nonunion | 4     |
| White | Not South | Union    | 5     |
| White | Not South | Nonunion | 6     |
|       | • • •     |          | • • • |

Preparatory work:

- Define distinct groups in the *n*-dimensional space defined by variables in factor(...)
- Calculate mean outcome by group

| race  | south     | union    | group | wage  |
|-------|-----------|----------|-------|-------|
| Black | Not South | Union    | 1     | 9.79  |
| Black | Not South | Nonunion | 2     | 7.22  |
| Black | South     | Union    | 3     | 7.49  |
| Black | South     | Nonunion | 4     | 5.45  |
| White | Not South | Union    | 5     | 8.77  |
| White | Not South | Nonunion | 6     | 7.87  |
| •••   |           | • • •    | • • • | • • • |

Preparatory work:

- Define distinct groups in the *n*-dimensional space defined by variables in factor(...)
- Calculate mean outcome by group
- Rank groups by mean outcome

| race  | south     | union    | group | wage  | rank |
|-------|-----------|----------|-------|-------|------|
| Black | Not South | Union    | 1     | 9.79  | 1    |
| Black | Not South | Nonunion | 2     | 7.22  | 6    |
| Black | South     | Union    | 3     | 7.49  | 4    |
| Black | South     | Nonunion | 4     | 5.45  | 5    |
| White | Not South | Union    | 5     | 8.77  | 2    |
| White | Not South | Nonunion | 6     | 7.87  | 3    |
| •••   | • • •     | • • •    | •••   | • • • | •••  |

- Keep only one observation per group to increase efficiency (Stata Tip 19)
- Generate indicator variables, signaling each level's presence/absence

| race  | race_d_white | race_d_black | race_d_other | south | union    | wage |
|-------|--------------|--------------|--------------|-------|----------|------|
| Black | 0            | 1            | 0            |       | Union    | 9.79 |
| Black | 0            | 1            | 0            |       | Nonunion | 7.22 |
| Black | 0            | 1            | 0            |       | Union    | 7.49 |
| Black | 0            | 1            | 0            |       | Nonunion | 5.45 |
| White | 1            | 0            | 0            |       | Union    | 8.77 |
| White | 1            | 0            | 0            |       | Nonunion | 7.87 |
|       |              |              |              | • • • |          |      |



# Mechanics of <code>mfcurve III</code>

Overlay plots:





Overlay plots:



scatter outcome rank (using group labels!)

+ indicators



Overlay plots:



- + indicators
- + active indicators (based on dummies == 1)



Overlay plots:



- $+ \ {\sf indicators}$
- + active indicators
   (based on dummies == 1)
- + ylabels based on *variable* labels



#### Overlay plots:



- $+ \ {\sf indicators}$
- + active indicators
   (based on dummies == 1)
- + ylabels based on variable labels
- $+\,$  ylabels based on  $\mathit{value}$  labels

#### Overlay plots:



- + indicators
- + active indicators (based on dummies == 1)
- + ylabels based on *variable* labels
- + ylabels based on *value* labels
- + custom graph types (rcap, rspike, etc.)



#### Demo: boxplot





#### Demo: style... (marker\_options)



▲ back

#### Demo: show(mean ci\_gradient)





#### Demo: show(groupsize)





# Comparison: mfcurve vs. specification curves



#### **Graphical differences**

| upper panel:  | mean values              | multivariate regression coefficients |
|---------------|--------------------------|--------------------------------------|
| lower y-axis: | levels                   | model ingredients                    |
| x-axis:       | treatment specifications | model specifications                 |



.....

# Comparison: mfcurve vs. specification curves



#### **Conceptual differences**

| analytical units: | discjunct subsamples      | (overlapping) models |
|-------------------|---------------------------|----------------------|
| applications:     | inferential & descriptive | inferential          |
| computation:      | parsimonious              | intensive            |



\_