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Motivation

I The price elasticity of gasoline demand is important for
researchers modeling automotive and energy markets and for
policy makers in urban planning and most importantly for
mitigating climate change

I Estimation is difficult due to:
I Endogeneity: Simultaneous supply and demand forces
I Seasonal prices and quantities trend over time
I Heterogeneity: locations differ in taxes, regulation,

infrastructure, macroeconomic climate (Wadud et al., 2010; Frondel et al.,
2012; Blundell et al., 2012; Hausman and Newey, 2016)
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Existing strategies for endogeneity

I We have an instrument! We follow the literature in
instrumenting prices with state fuel taxes (Davis and Kilian, 2011; Blundell
et al., 2012; Hausman and Newey, 2016; Coglianese et al., 2017; Hoderlein and Vanhems, 2018)

I Given panel structure, use P2SLS or FEIV with two-way fixed
effects to get a LATE?

I Even with exogenous regressors, recent work explores issues
from heterogeneous effects in two-way fixed effects models
—[De Chaisemartin and d’Haultfoeuille (2020); Sun and Abraham (2021); Wooldridge (2021);
Goldsmith-Pinkham et al. (2022); #metricstotheface]
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Complications from heterogeneity
Simple model (Murtazashvili and Wooldridge, 2008):
I yij = αi + xij(β + di ) + eij
I i = 1, ...,N indexes cluster, j = 1, ..,T indexes observations

within cluster, have instrument zij

β̂FEIV = β +

 N∑
i=1

T∑
j=1

z̈ ′ij ẍij

−1  N∑
i=1

T∑
j=1

z̈ ′ij ẍijdi +
N∑
i=1

T∑
j=1

z̈ ′ij ëij



I Consistency of FEIV requires:

E [(z̈ ′ij ẍij)
−1z̈ ′ij ẍijdi ] 6= 0

Violations:
I A LATE different from the ATE exists
I Even in a population of compliers, correlations between the

strength of IV and heterogeneous responsiveness leads to
inconsistency
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I Consistency of FEIV requires:

E [(z̈ ′ij ẍij)
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Correlated random coefficients–existing approaches

I Unobserved effect heterogeneity seems realistic in many
contexts but is often not modeled

I Some existing estimators assume homogeneous or uncorrelated
first-stage across individuals (Murtazashvili and Wooldridge, 2008, 2016; Laage, 2019)

I Fernández-Val and Lee (2013) adopt a natural approach of
estimating cluster-specific coefficients using GMM per cluster
and averages over them

I The Fernández-Val and Lee (2013) estimator does not,
however, handle two-way fixed effects models (and may have
difficulty with other exogenous regressors)
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Per-Cluster Instrumental Variable Approach: New

I We show how to use cross-sectional variation to handle
two-way fixed effects and exogenous regressors and within
variation to obtain cluster-specific effects

I Per-Cluster Instrumental Variables (PCIV) averages over these
to consistently estimate Population Average Effects or LATEs

I Provide standard errors for robust inference

I Monte-Carlo finite sample simulations

I Apply the estimators to estimate the price elasticity of demand
for gasoline finding meaning for differences in point estimates
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Pros and Cons

Advantages of using PCIV:

I Estimate PAEs (& LATEs for an identified group of compliers)
under less restrictive assumptions

I Estimate the distribution of effect heterogeneity

I Root mean squared error declines with more observations
per-cluster

I PC first-stage provides insight regarding key assumptions
underpinning IV estimation with grouped data

Constraints to using PCIV:

I Need sufficiently large clusters

I Sacrifice efficiency for robustness

Model Identification Constraint:

I Need variation in each cluster for each cluster to be
represented in the PAE without further assumptions
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General Model

Consider a correlated random effects model as follows:

yij = x1ijbi + x2ijδ + eij ,

x1ij = zijΓi + x2ijη + uij , i = 1, ...,N; j = 1, ...,T ,
(1)

I yij is a dependent variable
I x1ij is a 1 × K vector of plausibly endogenous covariates

I Plausibly heterogeneous second-stage slopes bi = β + di such
that E (di ) = 0

I zij , a 1× L (L ≥ K ) vector of instrumental variables
I Plausibly heterogeneous first-stage slopes Γi = γ + gi such

that E (gi ) = 0

I We allow for a 1 × H vector of exogenous covariates, x2ij ,
with δ and η, H × 1 vectors of homogeneous slopes
I May include a 1 × T vector of time indicators s.t. T < H

I eij is an idiosyncratic error



General estimator: first stage (unbiased in finite samples)

1. Pre-treat the data to account for
Γi : Per-cluster, regress x1ij and x2ij
on zij , saving the residuals

2. To consistently estimate η, regress
the residuals x̃1ij on x̃2ij pooling
over clusters to estimate η̂

3. Estimate Γi per-cluster by
regressing (x1ij − x2ijη̂) on zij to
obtain X̂1i

1. Similar to estimating
state-specific time
trends and detrending

2. Use cross-sectional
variation to estimate
homogeneous
parameters

3. Use within variation
(net of homogeneous
parameters) to get
the first stage by
cluster (Wooldridge, 2010)



General estimator: first stage (unbiased in finite samples)

1. Pre-treat the data to account for
Γi : Per-cluster, regress x1ij and x2ij
on zij , saving the residuals

2. To consistently estimate η, regress
the residuals x̃1ij on x̃2ij pooling
over clusters to estimate η̂

3. Estimate Γi per-cluster by
regressing (x1ij − x2ijη̂) on zij to
obtain X̂1i

1. Similar to estimating
state-specific time
trends and detrending

2. Use cross-sectional
variation to estimate
homogeneous
parameters

3. Use within variation
(net of homogeneous
parameters) to get
the first stage by
cluster (Wooldridge, 2010)



General estimator: first stage (unbiased in finite samples)

1. Pre-treat the data to account for
Γi : Per-cluster, regress x1ij and x2ij
on zij , saving the residuals

2. To consistently estimate η, regress
the residuals x̃1ij on x̃2ij pooling
over clusters to estimate η̂

3. Estimate Γi per-cluster by
regressing (x1ij − x2ijη̂) on zij to
obtain X̂1i

1. Similar to estimating
state-specific time
trends and detrending

2. Use cross-sectional
variation to estimate
homogeneous
parameters

3. Use within variation
(net of homogeneous
parameters) to get
the first stage by
cluster (Wooldridge, 2010)



General estimator: second stage (rinse wash repeat)

1. For the second stage, we regress yij and x2ij on x̂1ij
per-cluster, obtaining the residuals ẏi and ẋ2i

2. Regressing the residuals ẏij on ẋ2ij pooling over clusters allows

us to eliminate bi when we obtain δ̂

3. The heterogeneous slopes b̂i = (X̂′1i X̂1i )
−1X̂′1i (yi − X2i δ̂) can

be consistently estimated by regressing (yij − x2ijδ) on x̂1ij per
cluster

4. Averaging over b̂i obtains β̂PCIV =
∑N

i=1 wi b̂i

pciv.ado Stata package coming...
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Consistency of β̂PCIV
With T →∞ and N →∞,

plim
T , N→∞

(β̂PCIV − β) = E(di) + E[[Ei (x′ijHzixij)]−1Ei (x′ijHzieij)]

(2)

Thus, consistency of β̂PCIV follows from the assumptions
enumerated below:

(A1) i .i .d . across i

(A2) E[eij | x2i , zi ,di ] = 0, E[uij | x2i , zi , gi ] = 0

(A3) rank[Ei (z′ijxij)] = K , rank[Ei (z′ijzij)] = L, and E[z ′ijzije
2
ij ] is

positive definite

(A4) E[‖x2ij‖2] <∞, E[‖zij‖2] <∞; E[‖zij‖4] <∞, and
E[‖x2ij‖4] <∞

(A5) wi = Op(nε) where
∑N

i=1 wi = 1 and ε ≤ −1; N3+2ε/T → c,
where 0 < c <∞

Finite sample small T Finite sample small N



Inference

V̂(β̂PCIV − β) (3)

= V

(
N∑
i=1

wi

[
d̂i +

(
X′1iPiX1i

)−1
X′1iPi êi

])

=
N∑
i=1

w2
i d̂i d̂

′
i +

N∑
i=1

w2
i

(
X′1iPiX1i

)−1
X′1iPi Ω̂P′iX1i

(
X′1iPiX1i

)−1
where d̂i = b̂i − β̂PCIV and êi = yi − X 1i b̂i − X 2ij δ̂. The standard
errors from this estimator are robust to heteroskedasticity and
arbitrary correlation in the error term within cluster



Simplified model: kernel density plots of estimation errors,

β̂1 − β1



Root Mean Squared Errors across cluster size

DPG



Ratio of Mean SE by SD across cluster size

Note: Ratio of mean standard errors (SEs) divided by standard deviations (SDs)

of the estimates

Bias Coverage rates Finite sample small N



PCIV in practice: Elasticity of demand for gasoline
I First-stage heterogeneity: sales and per-unit taxes vary by

state
I Second-stage heterogeneity: infrastructure, population density,

and local economies vary by state
I Correlation: States with more infrastructure raise taxes more

Figure: Relationship between tax changes and public transportation



Estimating equation

logsalesij = α1i + logpriceijbi + xijδ + τ1t + εij ,

logpriceij = α2i + logtaxesijΓi + xijη2 + τ2t + uij .
(4)

I Includes state and month-by-year fixed effects

I Includes population, income, unemployment, temperature, and
rainfall exogenous covariates



Summary of Results Using Three Estimation Methods

Without volume weights Volume weighted
P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price -0.724 -0.929 -0.551 -0.463 -0.873 -0.555
(0.193) (0.415) (0.227) (0.154) (0.394) (0.240)

First-stage F-statistic 36.66 79.71 58.35 47.47 63.70 61.16
Controls N N N N N N

Log price -0.736 -0.828 -0.543 -0.512 -0.760 -0.561
(0.189) (0.327) (0.278) (0.138) (0.271) (0.294)

First-stage F-statistic 36.58 80.92 58.71 46.83 60.26 59.93
Controls Y Y Y Y Y Y



Violation: correlated elasticities and first-stage variation



FEIV implicit weighting vs volume weights



LATE

Table: Estimated elasticities among states in which the instrument is
strong (LATE)

Without volume weights Volume weighted
P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price -0.659 -1.153 -0.521 -0.430 -0.945 -0.541
(0.208) (0.389) (0.216) (0.170) (0.399) (0.210)

First-stage F-statistic 43.24 80.92 55.91 98.21 64.51 58.35

Notes: Sample composed of all states with first-stage F-statistics
above 10, excluding Hawaii, Indiana, Georgia, Michigan, and the
District of Columbia. Regressions condition on time-by-month fixed
effects. State-clustered standard errors appear in parentheses.



Conclusion

I This paper suggests Per-Cluster Instrumental Variable
Approach to identify PAEs

I When the strength of the instrument is related to the
heterogeneous effects, PCIV can consistently estimate
Population Average Effects

I With access to large T data sets, PCIV strictly dominates
FEIV

I Even without a large T it may be useful, and we advocate
considering PC first stage

I It seems that gasoline consumption is more elastic than
typically thought, though the confidence interval is wide





Consistency for Fixed Effects Estimators

I Wooldridge (2005) shows the conditions under which standard
fixed effects estimators are consistent in estimating PAEs

β̂FE = β + (
N∑
i=1

T∑
t=1

ẍ′ijẍij)
−1[

N∑
i=1

T∑
t=1

ẍ′ijẍijdi +
N∑
i=1

T∑
t=1

ẍ′ijëij]

(5)

I Assumptions for consistency for the simple case model is as
follows.

E (eij|xi1, ..., xij,bi) = 0, t = 1, ...,T , (6)

rankE (
T∑
t=1

ẍ′ijẍij) = K , (7)

E [ẍ′ijẍijdi] = 0, (8)

where ẍij = xij − T−1
T∑
t=1

xij.



Per-Cluster Estimation with Exogenous Regressors
I However, equation 8 may not hold in important cases.

I Per-cluster estimation in this simple model needs only two
steps (Bates et al. (2014))

I First, estimate b̂i for each cluster using OLS on only the
within-cluster observations, such that

b̂i = β + di + (
T∑
t=1

x′ijxij)
−1(

T∑
t=1

x′ijeij) (9)

I Second, average b̂i over clusters.

β̂PC = β+N−1
N∑
i=1

di+N−1
N∑
i=1

[(
T∑
t=1

x′ijxij)
−1(

T∑
t=1

x′ijeij)] (10)

I From the rank conditions, E (di) = 0 by definition, and the
strict exogeneity assumption from equation (2), per-cluster
estimator is unbiased

Endogenous regressors



Asymptotic unbiasedness with fixed N

With T →∞ and N fixed,

plim
T→∞

β̂PCIV

=β + N−1
N∑
i=1

di + N−1
N∑
i=1

[(E (z′ijxij))−1E (z′ijeij)].
(11)

E ( plim
T→∞

β̂PCIV ) = β + E (di) + E [[Ei (z′ijxij)]−1Ei (zij
′eij)]. (12)

∴ β̂PCIV is asymptotically unbiased.

Unlike FEIV, the PCIV estimator may provide an asymptoticly
unbiased estimate of β even when E [(z̈′ijẍij)

−1z̈′ijẍijdi] 6= 0



Assumption needed for consistency with T fixed

With fixed T,

plim
N→∞

β̂PCIV = β+ plim
N→∞

N−1
N∑
i=1

di+ plim
N→∞

N−1
N∑
i=1

[(
T∑
t=1

z′ijxij)
−1

T∑
t=1

z′ijeij ]. (13)

plim
N→∞

β̂PCIV = β + E [di] + E [(
T∑
t=1

z′ijxij)
−1

T∑
t=1

zij
′eij ]. (14)

In this case, in order for β̂PCIV to consistently estimate the PAE
(β), we must assume

E [(
∑T

t=1 z′ijxij)
−1∑T

t=1 zij
′eij ] = 0

I Each estimated bi is bound to manifest some degree of finite
sample bias (Bound et al. (1995))



Simulation: Data Generating Process
I We generate the data based on Equation 18 with 500

observations for each cluster
I We generate two types of yij with β1 = 1

I Uncorrelated covariance assumption is violated with y1,ij
I Uncorrelated covariance assumption with y2,ij

y1ij =d0i + (β1 + d1i )x1ij + oij + vij , v1ij ∼ N(0, σv ). (15)

y2ij =d0i + (β1 + d2i )x2ij + oij + v2ij , v2ij ∼ N(0, σv ). (16)

I xij is “observed” in the data and is a function x2,it , zij , d0,
and d2

I oij is exogenous but is “unobserved” in the data creating
omitted variables bias

I zij ∼ N(0, σz). In order to violate the uncorrelated
covariance assumption σz = exp(d1)

I d0 and d2 are each drawn from bivariate normal distribution
and are allowed to be correlated with each other

Simulation



Simulation Results: Bias



Simulation Results: Coverage rate



Simulation Results: RMSE varying N of clusters



PC First Stage

I PC provides an unbiased estimate of the first stage.

γ̂PC = γ + N−1
N∑
i=1

di + N−1
N∑
i=1

[(
T∑
t=1

z′ijzij)
−1(

T∑
t=1

z′ijuij)]

(17)

I Allows identification of compliers
I Tests monotonicity
I Provides sample analogue to the key assumption behind FEIV



Weighting

Who is the population of interest?
I Panel data settings: Population from which the sample is

drawn
I However, panels are rarely random samples: NLSY and PSID

both over-sample low income individuals and households
I We can still recover PAEs using a weighted average in the last

stage

I Grouped cross-sectional settings: Is the population individuals
or groups?
I If each groups comprise the population of interest with random

sampling simple averaging is fine.
I If we are interested in the individuals within groups, population

weighted average in the last stage is needed to recover PAEs

Potential applications



Exogenous covariates

Consider the slightly richer model presented below:

yij = x1itbi + x2itδ + eij , t = 1, ...,T , (18)

I Year fixed effects provide one common and reasonable
example of x2it

I Including these in each regression could lead to the incidental
parameters problem, and more generally cut into our degrees
of freedom in the per-cluster regressions

I What to do?
I Apply Frisch-Waugh-Lowell to residualize the data
I Use residualized data for PCIV estimation

Potential applications



Mechanisms

Consider the following “multi-level model”:

yij = xijbi + eij ,

bi = β + wiγ + di,
(19)

where wi = (w1i , ...,wJi ) is a vector of observable cluster-level
components or mechanisms driving the heterogeneous effects

I If we assume E [diwi] = 0 and E [wieij ] = 0, we can estimate
these mechanisms using PCIV, allowing E [xijwi] 6= 0.

I To estimate mechanisms:
I Estimate cluster specific slopes b̂iPCIV as before ignoring wi

I In the second stage regress b̂iPCIV on wi

Potential applications



Simulation Results Summary

I Under uncorrelated covariance, PCIV is noisier and seems to
manifest additional finite sample bias with very small clusters.
Still, with a cluster size of 20 all three estimators perform
equally well

I In contrast, both FEIV and P2SLS are biased when the
uncorrelated covariance assumption is violated. PCIV
manifests less bias than the other two estimators across
cluster sizes

I The ratio of mean SEs/SDs for PCIV is closest to 1, in both
cases of uncorrelated and correlated covariance.
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