Estimating the Price Elasticity of Gasoline Demand in Correlated Random Coefficient Models with Endogeneity

Michael Bates Seolah Kim

UC-Riverside

Albion College

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

June, 2023

The price elasticity of gasoline demand is important for researchers modeling automotive and energy markets and for policy makers in urban planning and most importantly for mitigating climate change

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The price elasticity of gasoline demand is important for researchers modeling automotive and energy markets and for policy makers in urban planning and most importantly for mitigating climate change
- Estimation is difficult due to:
 - Endogeneity: Simultaneous supply and demand forces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The price elasticity of gasoline demand is important for researchers modeling automotive and energy markets and for policy makers in urban planning and most importantly for mitigating climate change
- Estimation is difficult due to:
 - Endogeneity: Simultaneous supply and demand forces

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Seasonal prices and quantities trend over time

- The price elasticity of gasoline demand is important for researchers modeling automotive and energy markets and for policy makers in urban planning and most importantly for mitigating climate change
- Estimation is difficult due to:
 - Endogeneity: Simultaneous supply and demand forces
 - Seasonal prices and quantities trend over time
 - Heterogeneity: locations differ in taxes, regulation, infrastructure, macroeconomic climate (Wadud et al., 2010; Frondel et al., 2012; Blundell et al., 2012; Hausman and Newey, 2016)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Existing strategies for endogeneity

We have an instrument! We follow the literature in instrumenting prices with state fuel taxes (Davis and Kilian, 2011; Blundell et al., 2012; Hausman and Newey, 2016; Coglianese et al., 2017; Hoderlein and Vanhems, 2018)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Existing strategies for endogeneity

- We have an instrument! We follow the literature in instrumenting prices with state fuel taxes (Davis and Kilian, 2011; Blundell et al., 2012; Hausman and Newey, 2016; Coglianese et al., 2017; Hoderlein and Vanhems, 2018)
- Given panel structure, use P2SLS or FEIV with two-way fixed effects to get a LATE?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Existing strategies for endogeneity

- We have an instrument! We follow the literature in instrumenting prices with state fuel taxes (Davis and Kilian, 2011; Blundell et al., 2012; Hausman and Newey, 2016; Coglianese et al., 2017; Hoderlein and Vanhems, 2018)
- Given panel structure, use P2SLS or FEIV with two-way fixed effects to get a LATE?
- Even with exogenous regressors, recent work explores issues from heterogeneous effects in two-way fixed effects models [De Chaisemartin and d'Haultfoeuille (2020); Sun and Abraham (2021); Wooldridge (2021); Goldsmith-Pinkham et al. (2022); #metricstotheface]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Complications from heterogeneity

Simple model (Murtazashvili and Wooldridge, 2008):

$$\blacktriangleright y_{ij} = \alpha_i + x_{ij}(\beta + d_i) + e_{ij}$$

▶ i = 1, ..., N indexes cluster, j = 1, ..., T indexes observations within cluster, have instrument z_{ij}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complications from heterogeneity

Simple model (Murtazashvili and Wooldridge, 2008):

$$\blacktriangleright y_{ij} = \alpha_i + x_{ij}(\beta + d_i) + e_{ij}$$

▶ i = 1, ..., N indexes cluster, j = 1, ..., T indexes observations within cluster, have instrument z_{ij}

$$\hat{\beta}_{FEIV} = \beta + \left(\sum_{i=1}^{N} \sum_{j=1}^{T} \ddot{z}'_{ij} \ddot{x}_{ij}\right)^{-1} \left[\sum_{i=1}^{N} \sum_{j=1}^{T} \ddot{z}'_{ij} \ddot{x}_{ij} d_{i} + \sum_{i=1}^{N} \sum_{j=1}^{T} \ddot{z}'_{ij} \ddot{e}_{ij}\right]$$

Consistency of FEIV requires:

$$E[(\ddot{z}_{ij}'\ddot{x}_{ij})^{-1}\ddot{z}_{ij}'\ddot{x}_{ij}d_i]\neq 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complications from heterogeneity

Simple model (Murtazashvili and Wooldridge, 2008):

$$\blacktriangleright y_{ij} = \alpha_i + x_{ij}(\beta + d_i) + e_{ij}$$

▶ i = 1, ..., N indexes cluster, j = 1, ..., T indexes observations within cluster, have instrument z_{ij}

$$\hat{\beta}_{FEIV} = \beta + \left(\sum_{i=1}^{N} \sum_{j=1}^{T} \ddot{z}'_{ij} \ddot{x}_{ij}\right)^{-1} \left[\sum_{i=1}^{N} \sum_{j=1}^{T} \ddot{z}'_{ij} \ddot{x}_{ij} d_{i} + \sum_{i=1}^{N} \sum_{j=1}^{T} \ddot{z}'_{ij} \ddot{e}_{ij}\right]$$

Consistency of FEIV requires:

$$E[(\ddot{z}_{ij}'\ddot{x}_{ij})^{-1}\ddot{z}_{ij}'\ddot{x}_{ij}d_i]\neq 0$$

Violations:

A LATE different from the ATE exists

Even in a population of compliers, correlations between the strength of IV and heterogeneous responsiveness leads to inconsistency

 Unobserved effect heterogeneity seems realistic in many contexts but is often not modeled

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Unobserved effect heterogeneity seems realistic in many contexts but is often not modeled
- Some existing estimators assume homogeneous or uncorrelated first-stage across individuals (Murtazashvili and Wooldridge, 2008, 2016; Laage, 2019)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Unobserved effect heterogeneity seems realistic in many contexts but is often not modeled
- Some existing estimators assume homogeneous or uncorrelated first-stage across individuals (Murtazashvili and Wooldridge, 2008, 2016; Laage, 2019)
- Fernández-Val and Lee (2013) adopt a natural approach of estimating cluster-specific coefficients using GMM per cluster and averages over them

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Unobserved effect heterogeneity seems realistic in many contexts but is often not modeled
- Some existing estimators assume homogeneous or uncorrelated first-stage across individuals (Murtazashvili and Wooldridge, 2008, 2016; Laage, 2019)
- Fernández-Val and Lee (2013) adopt a natural approach of estimating cluster-specific coefficients using GMM per cluster and averages over them
- The Fernández-Val and Lee (2013) estimator does not, however, handle two-way fixed effects models (and may have difficulty with other exogenous regressors)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We show how to use cross-sectional variation to handle two-way fixed effects and exogenous regressors and within variation to obtain cluster-specific effects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- We show how to use cross-sectional variation to handle two-way fixed effects and exogenous regressors and within variation to obtain cluster-specific effects
- Per-Cluster Instrumental Variables (PCIV) averages over these to consistently estimate Population Average Effects or LATEs

- We show how to use cross-sectional variation to handle two-way fixed effects and exogenous regressors and within variation to obtain cluster-specific effects
- Per-Cluster Instrumental Variables (PCIV) averages over these to consistently estimate Population Average Effects or LATEs

Provide standard errors for robust inference

- We show how to use cross-sectional variation to handle two-way fixed effects and exogenous regressors and within variation to obtain cluster-specific effects
- Per-Cluster Instrumental Variables (PCIV) averages over these to consistently estimate Population Average Effects or LATEs

- Provide standard errors for robust inference
- Monte-Carlo finite sample simulations

- We show how to use cross-sectional variation to handle two-way fixed effects and exogenous regressors and within variation to obtain cluster-specific effects
- Per-Cluster Instrumental Variables (PCIV) averages over these to consistently estimate Population Average Effects or LATEs
- Provide standard errors for robust inference
- Monte-Carlo finite sample simulations
- Apply the estimators to estimate the price elasticity of demand for gasoline finding meaning for differences in point estimates

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pros and Cons

Advantages of using PCIV:

- Estimate PAEs (& LATEs for an identified group of compliers) under less restrictive assumptions
- Estimate the distribution of effect heterogeneity
- Root mean squared error declines with more observations per-cluster
- PC first-stage provides insight regarding key assumptions underpinning IV estimation with grouped data

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Pros and Cons

Advantages of using PCIV:

- Estimate PAEs (& LATEs for an identified group of compliers) under less restrictive assumptions
- Estimate the distribution of effect heterogeneity
- Root mean squared error declines with more observations per-cluster
- PC first-stage provides insight regarding key assumptions underpinning IV estimation with grouped data

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Constraints to using PCIV:

- Need sufficiently large clusters
- Sacrifice efficiency for robustness

Pros and Cons

Advantages of using PCIV:

- Estimate PAEs (& LATEs for an identified group of compliers) under less restrictive assumptions
- Estimate the distribution of effect heterogeneity
- Root mean squared error declines with more observations per-cluster
- PC first-stage provides insight regarding key assumptions underpinning IV estimation with grouped data

Constraints to using PCIV:

- Need sufficiently large clusters
- Sacrifice efficiency for robustness

Model Identification Constraint:

Need variation in each cluster for each cluster to be represented in the PAE without further assumptions

General Model

Consider a correlated random effects model as follows:

$$y_{ij} = \mathbf{x}_{1ij}\mathbf{b}_i + \mathbf{x}_{2ij}\boldsymbol{\delta} + e_{ij},$$

$$\mathbf{x}_{1ij} = \mathbf{z}_{ij}\mathbf{\Gamma}_i + \mathbf{x}_{2ij}\boldsymbol{\eta} + u_{ij}, \ i = 1, ..., N; j = 1, ..., T,$$
(1)

- y_{ij} is a dependent variable
- \blacktriangleright \mathbf{x}_{1ij} is a 1 \times K vector of plausibly endogenous covariates
 - Plausibly heterogeneous second-stage slopes b_i = β + d_i such that E(d_i) = 0
- ▶ z_{ij} , a 1 × L (L ≥ K) vector of instrumental variables
 - Plausibly heterogeneous first-stage slopes Γ_i = γ + g_i such that E(g_i) = 0
- We allow for a 1 \times *H* vector of exogenous covariates, \mathbf{x}_{2ij} , with δ and η , *H* \times 1 vectors of homogeneous slopes
 - May include a 1 × T vector of time indicators s.t. T < H</p>
- *e_{ij}* is an idiosyncratic error

General estimator: first stage (unbiased in finite samples)

- Pre-treat the data to account for *Γ*_i: Per-cluster, regress x_{1ij} and x_{2ij} on z_{ij}, saving the residuals
- To consistently estimate η, regress the residuals x̃_{1ij} on x̃_{2ij} pooling over clusters to estimate η̂
- 3. Estimate Γ_i per-cluster by regressing $(\mathbf{x}_{1ij} - \mathbf{x}_{2ij}\hat{\boldsymbol{\eta}})$ on \mathbf{z}_{ij} to obtain $\hat{\mathbf{X}}_{1i}$

1. Similar to estimating state-specific time trends and detrending

▲□▶ ▲冊▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

General estimator: first stage (unbiased in finite samples)

- Pre-treat the data to account for Γ_i: Per-cluster, regress x_{1ij} and x_{2ij} on z_{ij}, saving the residuals
- 2. To consistently estimate η , regress the residuals $\tilde{\mathbf{x}}_{1ij}$ on $\tilde{\mathbf{x}}_{2ij}$ pooling over clusters to estimate $\hat{\eta}$
- 3. Estimate Γ_i per-cluster by regressing $(\mathbf{x}_{1ij} - \mathbf{x}_{2ij}\hat{\boldsymbol{\eta}})$ on \mathbf{z}_{ij} to obtain $\hat{\mathbf{X}}_{1i}$

- 1. Similar to estimating state-specific time trends and detrending
- 2. Use cross-sectional variation to estimate homogeneous parameters

General estimator: first stage (unbiased in finite samples)

- Pre-treat the data to account for *Γ_i*: Per-cluster, regress x_{1ij} and x_{2ij} on z_{ij}, saving the residuals
- 2. To consistently estimate η , regress the residuals $\tilde{\mathbf{x}}_{1ij}$ on $\tilde{\mathbf{x}}_{2ij}$ pooling over clusters to estimate $\hat{\eta}$
- 3. Estimate Γ_i per-cluster by regressing $(\mathbf{x}_{1ij} - \mathbf{x}_{2ij}\hat{\boldsymbol{\eta}})$ on \mathbf{z}_{ij} to obtain $\hat{\mathbf{X}}_{1i}$

- 1. Similar to estimating state-specific time trends and detrending
- 2. Use cross-sectional variation to estimate homogeneous parameters
- 3. Use within variation (net of homogeneous parameters) to get the first stage by cluster (Wooldridge, 2010)

General estimator: second stage (rinse wash repeat)

- 1. For the second stage, we regress y_{ij} and \mathbf{x}_{2ij} on $\hat{\mathbf{x}}_{1ij}$ per-cluster, obtaining the residuals $\dot{\mathbf{y}}_i$ and $\dot{\mathbf{x}}_{2i}$
- 2. Regressing the residuals \dot{y}_{ij} on $\dot{\mathbf{x}}_{2ij}$ pooling over clusters allows us to eliminate \mathbf{b}_i when we obtain $\hat{\delta}$
- 3. The heterogeneous slopes $\hat{\mathbf{b}}_i = (\hat{\mathbf{X}}'_{1i}\hat{\mathbf{X}}_{1i})^{-1}\hat{\mathbf{X}}'_{1i}(\mathbf{y}_i \mathbf{X}_{2i}\hat{\delta})$ can be consistently estimated by regressing $(y_{ij} \mathbf{x}_{2ij}\delta)$ on $\hat{\mathbf{x}}_{1ij}$ per cluster

General estimator: second stage (rinse wash repeat)

- 1. For the second stage, we regress y_{ij} and \mathbf{x}_{2ij} on $\hat{\mathbf{x}}_{1ij}$ per-cluster, obtaining the residuals $\dot{\mathbf{y}}_i$ and $\dot{\mathbf{x}}_{2i}$
- 2. Regressing the residuals \dot{y}_{ij} on $\dot{\mathbf{x}}_{2ij}$ pooling over clusters allows us to eliminate \mathbf{b}_i when we obtain $\hat{\delta}$
- 3. The heterogeneous slopes $\hat{\mathbf{b}}_i = (\hat{\mathbf{X}}'_{1i}\hat{\mathbf{X}}_{1i})^{-1}\hat{\mathbf{X}}'_{1i}(\mathbf{y}_i \mathbf{X}_{2i}\hat{\delta})$ can be consistently estimated by regressing $(y_{ij} \mathbf{x}_{2ij}\delta)$ on $\hat{\mathbf{x}}_{1ij}$ per cluster

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4. Averaging over $\hat{\mathbf{b}}_i$ obtains $\hat{\boldsymbol{\beta}}_{PCIV} = \sum_{i=1}^{N} w_i \hat{\mathbf{b}}_i$

General estimator: second stage (rinse wash repeat)

- 1. For the second stage, we regress y_{ij} and \mathbf{x}_{2ij} on $\hat{\mathbf{x}}_{1ij}$ per-cluster, obtaining the residuals $\dot{\mathbf{y}}_i$ and $\dot{\mathbf{x}}_{2i}$
- 2. Regressing the residuals \dot{y}_{ij} on $\dot{\mathbf{x}}_{2ij}$ pooling over clusters allows us to eliminate \mathbf{b}_i when we obtain $\hat{\delta}$
- 3. The heterogeneous slopes $\hat{\mathbf{b}}_i = (\hat{\mathbf{X}}'_{1i}\hat{\mathbf{X}}_{1i})^{-1}\hat{\mathbf{X}}'_{1i}(\mathbf{y}_i \mathbf{X}_{2i}\hat{\delta})$ can be consistently estimated by regressing $(y_{ij} \mathbf{x}_{2ij}\delta)$ on $\hat{\mathbf{x}}_{1ij}$ per cluster
- 4. Averaging over $\hat{\mathbf{b}}_i$ obtains $\hat{\boldsymbol{\beta}}_{PCIV} = \sum_{i=1}^{N} w_i \hat{\mathbf{b}}_i$

pciv.ado Stata package coming...

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consistency of $\widehat{\beta}_{PCIV}$

With
$$T
ightarrow\infty$$
 and $N
ightarrow\infty$,

$$\lim_{\mathcal{T}, N \to \infty} \left(\hat{\beta}_{PCIV} - \beta \right) = \mathrm{E}(\mathbf{d}_{i}) + \mathrm{E}[[\mathrm{E}_{i}(\mathbf{x}_{ij}'\mathbf{H}_{\mathbf{z}_{i}}\mathbf{x}_{ij})]^{-1}\mathrm{E}_{i}(\mathbf{x}_{ij}'\mathbf{H}_{\mathbf{z}_{i}}e_{ij})]$$
(2)

Thus, consistency of $\hat{\beta}_{PCIV}$ follows from the assumptions enumerated below:

(A1) *i.i.d.* across *i*

(A2)
$$\operatorname{E}[e_{ij} \mid \mathbf{x}_{2i}, \mathbf{z}_i, \mathbf{d}_i] = 0, \ \operatorname{E}[u_{ij} \mid \mathbf{x}_{2i}, \mathbf{z}_i, \mathbf{g}_i] = 0$$

- (A3) $rank[E_i(\mathbf{z}'_{ij}\mathbf{x}_{ij})] = K$, $rank[E_i(\mathbf{z}'_{ij}\mathbf{z}_{ij})] = L$, and $E[z'_{ij}z_{ij}e^2_{ij}]$ is positive definite
- (A4) $E[\|\mathbf{x}_{2ij}\|^2] < \infty$, $E[\|\mathbf{z}_{ij}\|^2] < \infty$; $E[\|\mathbf{z}_{ij}\|^4] < \infty$, and $E[\|\mathbf{x}_{2ij}\|^4] < \infty$
- (A5) $w_i = O_p(n^{\epsilon})$ where $\sum_{i=1}^{N} w_i = 1$ and $\epsilon \leq -1$; $N^{3+2\epsilon}/T \rightarrow c$, where $0 < c < \infty$

Finite sample small T

Finite sample small N

Inference

$$\hat{\mathbf{V}}(\hat{\boldsymbol{\beta}}_{PCIV} - \boldsymbol{\beta})$$

$$= \mathbf{V}\left(\sum_{i=1}^{N} w_i \left[\hat{\mathbf{d}}_i + \left(\mathbf{X}_{1i}' \mathbf{P}_i \mathbf{X}_{1i}\right)^{-1} \mathbf{X}_{1i}' \mathbf{P}_i \hat{e}_i\right]\right)$$

$$= \sum_{i=1}^{N} w_i^2 \hat{\mathbf{d}}_i \hat{\mathbf{d}}_i' + \sum_{i=1}^{N} w_i^2 \left(\mathbf{X}_{1i}' \mathbf{P}_i \mathbf{X}_{1i}\right)^{-1} \mathbf{X}_{1i}' \mathbf{P}_i \hat{\Omega} \mathbf{P}_i' \mathbf{X}_{1i} \left(\mathbf{X}_{1i}' \mathbf{P}_i \mathbf{X}_{1i}\right)^{-1}$$
(3)

where $\hat{\mathbf{d}}_{i} = \hat{\mathbf{b}}_{i} - \hat{\beta}_{PCIV}$ and $\hat{e}_{i} = y_{i} - \mathbf{X}_{1i}\hat{\mathbf{b}}_{i} - \mathbf{X}_{2ij}\hat{\mathbf{\delta}}$. The standard errors from this estimator are robust to heteroskedasticity and arbitrary correlation in the error term within cluster

Simplified model: kernel density plots of estimation errors, $\hat{\beta}_1 - \beta_1$

・ロト・日本・モト・モー シック・

Root Mean Squared Errors across cluster size

DPG

Ratio of Mean SE by SD across cluster size

Note: Ratio of mean standard errors (SEs) divided by standard deviations (SDs) of the estimates

Bias Coverage rates

lite sample small N 「言ト ◀ 言 ト 言 ∽ � � �

< □ > < 同

PCIV in practice: Elasticity of demand for gasoline

- First-stage heterogeneity: sales and per-unit taxes vary by state
- Second-stage heterogeneity: infrastructure, population density, and local economies vary by state
- Correlation: States with more infrastructure raise taxes more

Figure: Relationship between tax changes and public transportation

Estimating equation

$$logsales_{ij} = \alpha_{1i} + logprice_{ij}b_i + \mathbf{x}_{ij}\boldsymbol{\delta} + \tau_{1t} + \epsilon_{ij}, logprice_{ij} = \alpha_{2i} + logtaxes_{ij}\Gamma_i + \mathbf{x}_{ij}\boldsymbol{\eta}_2 + \tau_{2t} + u_{ij}.$$
(4)

- Includes state and month-by-year fixed effects
- Includes population, income, unemployment, temperature, and rainfall exogenous covariates

Summary of Results Using Three Estimation Methods

	Without volume weights			Volume weighted		
	P2SLS	FEIV	PCIV	P2SLS	FEIV	PCIV
Log price	-0.724	-0.929	-0.551	-0.463	-0.873	-0.555
	(0.193)	(0.415)	(0.227)	(0.154)	(0.394)	(0.240)
First-stage F-statistic	36.66	79.71	58.35	47.47	63.70	61.16
Controls	Ν	Ν	Ν	Ν	Ν	Ν
Log price	-0.736	-0.828	-0.543	-0.512	-0.760	-0.561
	(0.189)	(0.327)	(0.278)	(0.138)	(0.271)	(0.294)
First-stage F-statistic	36.58	80.92	58.71	46.83	60.26	59.93
Controls	Υ	Υ	Υ	Υ	Υ	Y

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Violation: correlated elasticities and first-stage variation

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

FEIV implicit weighting vs volume weights

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

LATE

Table: Estimated elasticities among states in which the instrument is strong (LATE)

	Without volume weights			Volume weighted			
	P2SLS	FEIV	PCIV	P2SLS	FEIV	PCIV	
Log price	-0.659 (0.208)	-1.153 (0.389)	-0.521 (0.216)	-0.430 (0.170)	-0.945 (0.399)	-0.541 (0.210)	
First-stage F-statistic	43.24	80.92	55.91	98.21	64.51	58.35	

Notes: Sample composed of all states with first-stage F-statistics above 10, excluding Hawaii, Indiana, Georgia, Michigan, and the District of Columbia. Regressions condition on time-by-month fixed effects. State-clustered standard errors appear in parentheses.

Conclusion

- This paper suggests Per-Cluster Instrumental Variable Approach to identify PAEs
- When the strength of the instrument is related to the heterogeneous effects, PCIV can consistently estimate Population Average Effects
- With access to large T data sets, PCIV strictly dominates FEIV
- Even without a large T it may be useful, and we advocate considering PC first stage
- It seems that gasoline consumption is more elastic than typically thought, though the confidence interval is wide

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

ふして 山田 ふぼやえばや 山下

Consistency for Fixed Effects Estimators

Wooldridge (2005) shows the conditions under which standard fixed effects estimators are consistent in estimating PAEs

$$\widehat{\beta_{FE}} = \beta + \left(\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{x}}_{ij}' \ddot{\mathbf{x}}_{ij}\right)^{-1} \left[\sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{x}}_{ij}' \ddot{\mathbf{x}}_{ij} \mathbf{d}_{i} + \sum_{i=1}^{N} \sum_{t=1}^{T} \ddot{\mathbf{x}}_{ij}' \ddot{\mathbf{e}}_{ij}\right]$$
(5)

 Assumptions for consistency for the simple case model is as follows.

T

$$E(\mathbf{e}_{ij}|\mathbf{x}_{i1},...,\mathbf{x}_{ij},\mathbf{b}_i) = 0, \ t = 1,...,T,$$
(6)

$$rankE(\sum_{t=1}^{\prime}\ddot{\mathbf{x}}_{\mathbf{ij}}'\ddot{\mathbf{x}}_{\mathbf{ij}}) = K, \tag{7}$$

$$E[\mathbf{\ddot{x}}'_{ij}\mathbf{\ddot{x}}_{ij}\mathbf{d}_{i}] = 0, \qquad (8)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where
$$\ddot{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \mathcal{T}^{-1} \sum_{t=1}^{T} \mathbf{x}_{ij}$$
.

Per-Cluster Estimation with Exogenous Regressors

- However, equation 8 may not hold in important cases.
- Per-cluster estimation in this simple model needs only two steps (Bates et al. (2014))
 - First, estimate $\widehat{b_i}$ for each cluster using OLS on only the within-cluster observations, such that

$$\widehat{\mathbf{b}}_{\mathbf{i}} = \beta + \mathbf{d}_{\mathbf{i}} + (\sum_{t=1}^{T} \mathbf{x}_{i\mathbf{j}}' \mathbf{x}_{i\mathbf{j}})^{-1} (\sum_{t=1}^{T} \mathbf{x}_{i\mathbf{j}}' e_{i\mathbf{j}})$$
(9)

• Second, average $\widehat{\mathbf{b}_i}$ over clusters.

$$\widehat{\beta_{PC}} = \beta + N^{-1} \sum_{i=1}^{N} \mathbf{d}_{i} + N^{-1} \sum_{i=1}^{N} [(\sum_{t=1}^{T} \mathbf{x}_{ij}' \mathbf{x}_{ij})^{-1} (\sum_{t=1}^{T} \mathbf{x}_{ij}' e_{ij})]$$
(10)

From the rank conditions, E(d_i) = 0 by definition, and the strict exogeneity assumption from equation (2), per-cluster estimator is unbiased

Asymptotic unbiasedness with fixed N

With $T \rightarrow \infty$ and N fixed,

Unlike FEIV, the PCIV estimator may provide an asymptoticly unbiased estimate of β even when $E[(\mathbf{\ddot{z}}'_{ii}\mathbf{\ddot{x}}_{ij})^{-1}\mathbf{\ddot{z}}'_{ii}\mathbf{\ddot{x}}_{ij}\mathbf{d}_{i}] \neq 0$

Assumption needed for consistency with T fixed

With fixed T,

$$\widehat{\beta_{PCIV}} = \beta + \underset{N \to \infty}{\text{plim}} N^{-1} \sum_{i=1}^{N} \mathbf{d}_{i} + \underset{N \to \infty}{\text{plim}} N^{-1} \sum_{i=1}^{N} [(\sum_{t=1}^{T} \mathbf{z}'_{ij} \mathbf{x}_{ij})^{-1} \sum_{t=1}^{T} \mathbf{z}'_{ij} \mathbf{e}_{ij}].$$
(13)

$$\lim_{N \to \infty} \widehat{\beta_{PCIV}} = \beta + E[\mathbf{d}_i] + E[(\sum_{t=1}^T \mathbf{z}'_{ij}\mathbf{x}_{ij})^{-1} \sum_{t=1}^T \mathbf{z}_{ij}' e_{ij}].$$
(14)

In this case, in order for $\widehat{\beta_{PCIV}}$ to consistently estimate the PAE (β) , we must assume

$$E[(\sum_{t=1}^{T} \mathbf{z}'_{ij} \mathbf{x}_{ij})^{-1} \sum_{t=1}^{T} \mathbf{z}_{ij}' e_{ij}] = 0$$

 Each estimated b_i is bound to manifest some degree of finite sample bias (Bound et al. (1995))

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Simulation: Data Generating Process

- We generate the data based on Equation 18 with 500 observations for each cluster
 - We generate two types of y_{ij} with $\beta_1 = 1$
 - Uncorrelated covariance assumption is violated with y_{1,ij}
 - Uncorrelated covariance assumption with y_{2,ij}

$$y_{1ij} = d_{0i} + (\beta_1 + d_{1i})x_{1ij} + o_{ij} + v_{ij}, \quad v_{1ij} \sim N(0, \sigma_v).$$
(15)
$$y_{2ij} = d_{0i} + (\beta_1 + d_{2i})x_{2ij} + o_{ij} + v_{2ij}, \quad v_{2ij} \sim N(0, \sigma_v).$$
(16)

- ▶ x_{ij} is "observed" in the data and is a function $x_{2,it}$, z_{ij} , d_0 , and d_2
- o_{ij} is exogenous but is "unobserved" in the data creating omitted variables bias
- ► $z_{ij} \sim N(0, \sigma_z)$. In order to violate the uncorrelated covariance assumption $\sigma_z = \exp(d_1)$
- d₀ and d₂ are each drawn from bivariate normal distribution and are allowed to be correlated with each other

Simulation

Simulation Results: Bias

Simulation Results: Coverage rate

Simulation Results: RMSE varying N of clusters

PC First Stage

PC provides an unbiased estimate of the first stage.

$$\widehat{\gamma_{PC}} = \gamma + N^{-1} \sum_{i=1}^{N} \mathbf{d}_{i} + N^{-1} \sum_{i=1}^{N} [(\sum_{t=1}^{T} \mathbf{z}_{ij}' \mathbf{z}_{ij})^{-1} (\sum_{t=1}^{T} \mathbf{z}_{ij}' u_{ij})]$$
(17)

- Allows identification of compliers
- Tests monotonicity
- Provides sample analogue to the key assumption behind FEIV

Weighting

Who is the population of interest?

- Panel data settings: Population from which the sample is drawn
 - However, panels are rarely random samples: NLSY and PSID both over-sample low income individuals and households
 - We can still recover PAEs using a weighted average in the last stage
- Grouped cross-sectional settings: Is the population individuals or groups?
 - If each groups comprise the population of interest with random sampling simple averaging is fine.
 - If we are interested in the individuals within groups, population weighted average in the last stage is needed to recover PAEs

Potential applications

Exogenous covariates

Consider the slightly richer model presented below:

$$y_{ij} = \mathbf{x_{1it}}\mathbf{b_i} + \mathbf{x_{2it}}\boldsymbol{\delta} + e_{ij}, \ t = 1, ..., T,$$
(18)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Year fixed effects provide one common and reasonable example of x_{2it}
- Including these in each regression could lead to the incidental parameters problem, and more generally cut into our degrees of freedom in the per-cluster regressions
- What to do?
 - Apply Frisch-Waugh-Lowell to residualize the data
 - Use residualized data for PCIV estimation

Potential applications

Mechanisms

Consider the following "multi-level model":

$$y_{ij} = \mathbf{x}_{ij}\mathbf{b}_i + e_{ij},$$

$$\mathbf{b}_i = \beta + \mathbf{w}_i\gamma + \mathbf{d}_i,$$
 (19)

where $\mathbf{w}_{i} = (w_{1i}, ..., w_{Ji})$ is a vector of observable cluster-level components or mechanisms driving the heterogeneous effects

- If we assume E[d_iw_i] = 0 and E[w_ie_{ij}] = 0, we can estimate these mechanisms using PCIV, allowing E[x_{ii}w_i] ≠ 0.
- ► To estimate mechanisms:
 - Estimate cluster specific slopes b_{iPCIV} as before ignoring w_i
 - In the second stage regress b_{iPCIV} on w_i

Potential applications

Simulation Results Summary

- Under uncorrelated covariance, PCIV is noisier and seems to manifest additional finite sample bias with very small clusters. Still, with a cluster size of 20 all three estimators perform equally well
- In contrast, both FEIV and P2SLS are biased when the uncorrelated covariance assumption is violated. PCIV manifests less bias than the other two estimators across cluster sizes
- The ratio of mean SEs/SDs for PCIV is closest to 1, in both cases of uncorrelated and correlated covariance.

bib

- Blundell, R., J. L. Horowitz, and M. Parey (2012). Measuring the price responsiveness of gasoline demand: Economic shape restrictions and nonparametric demand estimation. *Quantitative Economics* 3(1), 29–51.
- Coglianese, J., L. W. Davis, L. Kilian, and J. H. Stock (2017). Anticipation, tax avoidance, and the price elasticity of gasoline demand. *Journal of Applied Econometrics* 32(1), 1–15.
- Davis, L. W. and L. Kilian (2011). Estimating the effect of a gasoline tax on carbon emissions. *Journal of Applied Econometrics 26*(7), 1187–1214.
- De Chaisemartin, C. and X. d'Haultfoeuille (2020). Two-way fixed effects estimators with heterogeneous treatment effects.

American Economic Review 110(9), 2964–96.

- Fernández-Val, I. and J. Lee (2013). Panel data models with nonadditive unobserved heterogeneity: Estimation and inference. *Quantitative Economics* 4(3), 453–481.
- Frondel, M., N. Ritter, and C. Vance (2012). Heterogeneity in the rebound effect: Further evidence for germany. *Energy* and the second second